VM For Developing Custom ROMs - Android Software Development

Virtualbox Virtual Machine For Custom ROMs​I found the steps necessary to compile a custom ROM a bit daunting.
Also, I have a Windows PC and most of the instructions are around Linux.
Therefore, I created a Vagrant project to automate all the setup. It does the following:
Creates an Ubuntu trusty64 server VM using VirtualBox
Add all the necessary packages
Adds a 'buildbot' user
Creates the local directory structure
Downloads the repo wrapper
Initialises the repo using CM13.0
Syncs the repos (downloads all the source code)
Adds the build commands
Adds Ziyans device tree for Galaxy Nexus
Syncs the device tree
Compiles the code (brunch maguro)
I have attempted to reduce the amount of data downloaded by excluding various groups and only doing a shallow clone i.e no history.
This still downloads 5.5 GB for the main CM source and 0.5 GB for @Ziyans device tree.
As long you have Vagrant and Virtualbox installed, you just clone my repo (or download the zip from GitHub) and type
Code:
vagrant up
and everything will be done for you!
https://github.com/opticyclic/cyanogenmod-vagrant
This was written for a Galaxy Nexus.
If you want to change ROM you need to modify this line:
Code:
exec { 'init repo':
cwd => '/home/buildbot/android/system',
command => '/usr/local/bin/repo init -u https://github.com/CyanogenMod/android.git -b cm-13.0 --depth=1 --groups=all,-notdefault,-device,-darwin,-x86,-mips,-exynos5,-intel,-eclipse,-device',
user => 'buildbot',
group => 'buildbot',
creates => '/home/buildbot/android/system/.repo',
timeout => 0,
require => [ File['chmod repo'], File['create build dirs'], File['create gitconfig'] ],
}
If you want to change device you need to change this line to your device name.
Code:
exec { 'brunch':
cwd => '/home/buildbot/android/system',
environment => ["HOME=/home/buildbot", "USER=buildbot"],
command => "/bin/bash -c 'source build/envsetup.sh;brunch maguro'",
user => 'buildbot',
group => 'buildbot',
timeout => 0,
require => Exec['sync repo'],
}
And make sure the correct device tree is mentioned in the roomservice.xml
NOTE: If you have CPUs or memory to spare then you should increase the VM settings in the Vagrantfile before doing vagrant up.
Code:
config.vm.provider :virtualbox do |vb|
vb.cpus = 2
vb.memory = 4096
UPDATE 2016-05-19: There was previously an issue with the order of the steps and the file owners. It should now run all the way through brunch maguro now.

.....and if I wanted all the source code Ziyan's "AOSP Omap4" , instead CM13 ?

At the moment it isn't complete as I didn't fully understand the last few steps of the CM build process.
However, the key file to change is https://github.com/opticyclic/cyanogenmod-vagrant/blob/master/modules/gnex/manifests/init.pp
I could add an if statement based on a property to use OMAP4 instead.
However, I would need to know the steps/urls that are different to CM.

Its in a much better state now with swap for those without much RAM to spare and a dedicated virtual drive for the code as the base box isn't big enough.
If you have an SSD you are going to see much faster times.
Also if you have the CPUs or RAM to spare you should increase the VM settings in the Vagrantfile before doing vagrant up.

In case you're familiar with Docker, you can also take a look at my docker-cyanogenmod project which does a very similar thing: http://forum.xda-developers.com/showthread.php?t=2650345
Besides this, I think that a project like this should not be limited to a specific device, so you might want to move the thread to the Android Software Development subforum: http://forum.xda-developers.com/android/software

Related

Ubuntu Setup Notes for Dev (kitchen) work - UPDATED 2/26

Update 2010-02-26 Added examples for linking either dynamically or statically (see page 2)
I decided to try and set up a kitchen using the closest thing to a native kernel dev environment that I could set up.
At this point I have:
- cross-compiled the HTC Desire (kernel) sources using the Android 1.6 NDK
- figured out the repo/git stuff to pull the Android sources corresponding to a given Android release point
- cross-compiled the entire Cupcake release to an ARM target using the NDK tools
- built a dynamically linked "hello, world" executable using the NDK arm-eabi-* tools and verified it works on the phone.
Yah, I know - not much yet, but it's a start for a newb.
I have some notes documenting the Ubuntu setup process in case anyone wants it - but it is full of links (URLs), so I can't post anything with links as a new user.
If a mod can "verify" my account, I'll post it up. I promise, I'll be good.
bftb0
OK, I guess I need to make a couple of posts before I can embed links.
I'll post it without the URL protocol prefix (it's gonna look fugly), and then come back and edit it once the restriction is removed. I hope someone finds it useful.
Android kernel dev is not officially supported on Windows; closest match to Google Dev environment seems to be -> Ubuntu 8.04 LTS + JDK 5 (32 bit, not x64).
I realize that this is nothing close to the "kitchens" that the WinMo folks have been using, but figured that (as a newb) I would just end up confusing myself trying to figure out which of those tools could be useful for Android, in addition to needing the native binary cross-compilation tools anyway.
(Note: I briefly tried to set this up in a Ubuntu VMware Player VM, but ran into limitations of available Ubuntu 8.04 LTS player machine file size limits (as well as problems hosting a VM bigger than about 10 Gb on a USB drive - insufficient space on my primary drive)
If anyone wants to follow in my footsteps, here is a thumbnail sketch of useful links. I'll admit, this is not for the faint of heart - you need Linux/Unix skills to work through the kinks.
1) (ubuntu.com/getubuntu/downloadmirrors#mirrors) Ubuntu Download Mirrors list - Find a server near you
2) Download ubuntu-8.04.4-alternate-i386.iso and burn it to 700 Mb CD-R
3) Install Ubuntu 8.04 LTS Desktop Version (gulp!)
4) Use the Ubuntu graphical package manager (System -> Administration -> Synaptic Package Manager) and install the packages (git, flex, bison, etc) mentioned in the "Ubuntu Linux (32-bit x86)" section in this (source.android.com/download)Android Source setup page
5) Note that JDK6 does not work correctly; rather than going to Sun/Oracle for JDK5, install the sun-java5-{bin,jdk,jre,doc,demo} packages (1.5.0-22-0ubuntu) using the Ubuntu package installer mentioned above. Note if you install the docs package, you will also need to go to Sun/Oracle and get jdk-1_5_0-doc.zip towards the end of the package install, and drop it into /tmp for the package manager to finish.
6) Go to the (developer.android.com/sdk/index.html) Android SDK Download page and get android-sdk_r04-linux_86.tgz
7) Unpack ( gunzip -c and...tgz | tar xf - ) to desired location, add tools dir to PATH
Optional Steps (For Java App Devs)
o-8) (eclipse.org/downloads/ Eclipse IDE Download page - chose 'Eclipse Classic 3.5.1 (162 MB)' for Linux, 32 bit (eclipse-SDK-3.5.1-linux-gtk.tar.gz)
o-9) Install by unpacking ( gunzip -c ecli....tar.gz | tar xf - ) to desired location, add eclipse folder to PATH
o-10) Run eclipse, and follow the (developer.android.com/sdk/eclipse-adt.html) Installing and Updating ADT instructions for adding Android functionality to Eclipse 3.5 (Galileo)
o-11) From within Eclipse, launch Window -> Android SDK and AVD Manager, and install all available & compatible Android SDK Tools (all versions). (You might need to use http instead of https... YMMV) Note that this is the same functionality as simply running the command "android" from the command prompt if the Android SDK (steps 6,7) tools directory is in your PATH
12) Familiarize yourself with the command line tool "adb" tool in the SDK; in particular, since Ubuntu needs root privs to access the USB hardware, the best way to start the adb server on your PC is to
Code:
$ sudo /bin/bash
- set up root's environment so the SDK "tools" directory is in root's PATH
- plug your phone into the USB cable
- On the Eris, set the options:
Settings -> Applications -> Development -> USB Debugging (on)
Settings -> Applications -> Development -> Stay awake (on)
Code:
# adb devices
This last command only lists the available USB-connected (real) devices and any emulators you have running, but as a side effect it starts up the adb server on the Ubuntu machine running as root. Thereafter, you can use adb (or ddms) as an unprivileged user.
13) Have a peek at the SDK "ddms" monitor. A variety of things can be done from here, the least of which is screen shots (Select device, then Device-> Screen capture)... and some more twisty things too.
14) Download the (developer.android.com/sdk/ndk/1.6_r1/index.html) Android 1.6 NDK r1 (Native Development Kit) - android-ndk-1.6_r1-linux-x86.zip, and unzip into your desired location. Add the ARM cross-compiler tools to your path (see example below).
15) At this point you might be using something like this to set up your path wherever you please (.profile or elsewhere, according to how you want to manage your environment)
Code:
_INSLOC='/opt/android/'
_JAVAPATH='/usr/lib/jvm/java-1.5.0-sun/bin'
_BASEPATH='/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin'
_ANDTOOLS="${_INSLOC}"'/android-sdk-linux_86/tools'
_ECLPSPATH="${_INSLOC}"'/eclipse-3.5.1'
_ARMXCOMPILE="${_INSLOC}"'/android-ndk-1.5_r1/build/prebuilt/linux-x86/arm-eabi-4.2.1/bin'
PATH="${_JAVAPATH}"':'"${_BASEPATH}"':'"${_ANDTOOLS}"':'"${_ECLPSPATH}"':'"${_ARMXCOMPILE}"
export PATH
16) Download the (member.america.htc.com/download/RomCode/Source_and_Binaries/desirec-be918f7b.tgz) HTC Desire Kernel Source Code and unpack to a location of your choice.
17) Test your enviroment by building the HTC Kernel code:
$ cd v2_6_27/kernel_msm7k; make
I can't remember if I needed to stuff anything into the environment here (e.g. 'CC' definitions, etc.) - but I know that I didn't need to modify any Makefiles. I think the make system will find all the "arm-eabi-*" executables if they are in your path. You will know soon enough.
18) Try to compile a "Hello, world!" program for the phone. Before you get too far along in this (e.g. "where is crt0.o?"), (honeypod.blogspot.com/2007/12/dynamically-linked-hello-world-for.html) read this blog post - steps 3 and 4 only.
You might find a Makefile similar to this useful:
Code:
AR = arm-eabi-ar
AS = arm-eabi-as
CC = arm-eabi-gcc
CXX = arm-eabi-c++
LD = arm-eabi-ld
NDK_KIT = /opt/android/android-ndk-1.5_r1
PLATF_KIT = build/platforms/android-1.5
ARM_INC = $(NDK_KIT)/$(PLATF_KIT)/arch-arm/usr/include
ARM_LIB = $(NDK_KIT)/$(PLATF_KIT)/arch-arm/usr/lib
PLATF_INC = $(NDK_KIT)/$(PLATF_KIT)/common/include
OBJS = hello.o start.o
EXES = hello
hello: hello.o start.o
$(LD) \
--entry=_start \
--dynamic-linker /system/bin/linker -nostdlib \
-rpath /system/lib -rpath $(ARM_LIB) \
-L $(ARM_LIB) -lc -o hello hello.o start.o
hello.o: hello.c
$(CC) -I $(ARM_INC) -I $(PLATF_INC) -c hello.c
start.o: start.c
$(CC) -I $(ARM_INC) -I $(PLATF_INC) -c start.c
clean:
rm -f $(OBJS) $(EXES)
and then
Code:
$ make hello 2>&1 | tee make_hello-log.txt
if all goes well, push to the phone
Code:
$ adb push hello /sqlite_stmt_journals/hello
and then use a shell on the phone to watch the lights gerblinken:
Code:
PC-path$ adb shell
$ cd /sqlite_stmt_journals
$ ./hello
Hello, world!
$ exit
PC-path$
19) Now, download the Android stock kernel sources:
- Make sure you have "git" and "repo" installed; see the (source.android.com/download) Android "Get source" page, starting from "Installing Repo".
- Make a clean directory to initialize "repo" in, and download the code:
Code:
$ mkdir ~/mydroid
$ cd ~/mydroid
$ repo init -u git://android.git.kernel.org/platform/manifest.git -b cupcake
$ repo sync
The sync step above will download the entire source tree corresponding to the Cupcake release (90 minutes on my link).
20) Build the sources
Code:
$ cd ~/mydroid
$ make 2>&1 | tee make_Android-log.txt
On my old PC, this step took about two hours.
Well, that's a little start; everything that comes after this is heavy lifting, I suppose.
bftb0
Thank you for that.
I forgot to add a disk space usage report to this; here it is:
O/S ( /, /boot, /var, /tmp) ~ 4 Gb **
Android SDK, all versions: 1.3 Gb
Android "Cupcake" full sources + full build: 5.5 Gb (2.5 Gb sources, 3.0 Gb build tree)
Android NDK ~0.05 Gb
Eclipse 3.5.1: 0.21 Gb
HTC Desire Kernel Sources + build ~ 0.77 Gb
All up, thats about 12 Gb minimum needed for a full environment. Obviously, you would want some headroom above that.
Note that if you only want to build native binaries, and not the full Android source tree (or develop Java applications), this could be done handily in a virtual machine which is less than 10 Gb in size - for Windows users, there are VMware "Player" versions of Ubuntu 8.0.4 available for that. That eliminates the need for a separate machine, or a dual-boot PC - and the worries of messing up trying to create a dual-boot machine.
All that is really needed for that is the Desktop OS and the NDK. Adding a single version of the SDK so you have 'adb' and 'ddms' available to you would be helpful, but not absolutely necessary if you are using a Windows host machine with those tools already present.
bftb0
** beware that Ubuntu uses a lot of space on /var if you put it in a separate partition - 600+ Mb in my configuration.
bftb0 said:
I forgot to add a disk space usage report to this; here it is:
O/S ( /, /boot, /var, /tmp) ~ 4 Gb **
Android SDK, all versions: 1.3 Gb
Android "Cupcake" full sources + full build: 5.5 Gb (2.5 Gb sources, 3.0 Gb build tree)
Android NDK ~0.05 Gb
Eclipse 3.5.1: 0.21 Gb
HTC Desire Kernel Sources + build ~ 0.77 Gb
All up, thats about 12 Gb minimum needed for a full environment. Obviously, you would want some headroom above that.
Note that if you only want to build native binaries, and not the full Android source tree (or develop Java applications), this could be done handily in a virtual machine which is less than 10 Gb in size - for Windows users, there are VMware "Player" versions of Ubuntu 8.0.4 available for that. That eliminates the need for a separate machine, or a dual-boot PC - and the worries of messing up trying to create a dual-boot machine.
All that is really needed for that is the Desktop OS and the NDK. Adding a single version of the SDK so you have 'adb' and 'ddms' available to you would be helpful, but not absolutely necessary if you are using a Windows host machine with those tools already present.
bftb0
** beware that Ubuntu uses a lot of space on /var if you put it in a separate partition - 600+ Mb in my configuration.
Click to expand...
Click to collapse
great very descriptive thread
Hey bftb0
thanks for posting this guide. I am trying to just play around with someone of the exploit binaries on my eris (from the tattoo/hero rooting threads) , so these guidelines are coming in handy. However for some reason whenever I try and do anything over adb i get this error:
Code:
error: insufficient permissions for device
I cant use adb shell at all, even trying to push to the sdcard gives permissions denied. In the adb devices output the phone is coming up as "?????? no permissions", Did I miss a step ?
My setup so far: Ubuntu 9.10 i386,
Hey bftb0
thanks for posting this guide. I am trying to just play around with someone of the exploit binaries on my eris (from the tattoo/hero rooting threads) , so these guidelines are coming in handy. However for some reason whenever I try and do anything over adb i get this error:
Code:
error: insufficient permissions for device
I cant use adb shell at all, even trying to push to the sdcard gives permissions denied. In the adb devices output the phone is coming up as "?????? no permissions", Did I miss a step ?
My setup so far: Ubuntu 9.10 i386, android-sdk_r04-linux_86, droid eris with most recent OTA
someguy, you have to go to developer.android.com/guide/developing/device.html and install the linux driver (as root) and restart your system.
@someguy
Type "adb kill-server" followed by "sudo adb". You need to run adb as root in unix for it to work.
zifnab06, that was it, I must have not run the first command as root which caused the server to be run without su.
What exactly does this do?
bigcj55 said:
What exactly does this do?
Click to expand...
Click to collapse
Because of the lineage between Linux and Android, the primary platform for compilation of the kernel and other ARM instruction-set binaries ("native" code) has been on Linux. It appears (at the moment...reading between the lines) that Google engineers are using Ubuntu 8.04 LTS as their choice of Linux platform for maintaining Android kernel & utilities code... so, in principle, it is the "best supported" platform for doing "native" development work, if for no other reason than it's what Google has been using. (Not because it is somehow a "better" O/S, but rather because you are likely to run into fewer quirks, and have more resources on the internet who might have experienced the same difficulties that you run into.)
For instance, the folks that have been building kernel exploit programs have been using the Google "NDK". They are not writing/compiling those in Java - they are writing or compiling programs written in "C", and compiling them into native (ARM) object code.
I provided notes from my own installation for anyone considering "dipping their toe" into building Android kernels or native binaries using Linux as a host O/S - most forum readers are not going to be interested in doing that.
Note that Google now releases an NDK for Windows, Linux, and Mac OS/X. The strange thing about doing development on Windows using Cygwin is that if you have sufficient skills to do so - and are capable of resolving problems that inevitably crop up - then you probably already have sufficient skills to be using Unix/Linux in the first place. Sort of depends on your past experience, though. I'd be willing to bet that Devs with a history of doing WinMo development probably would prefer to climb the Android development learning curve by trying their hand with the Windows/Cygwin NDK because of their familiarity with other Windows-based development tools (IDEs, hex editors, assemblers, GUI generators, etc).
That reminds me though - I need to update this thread with something else.
Cheers
bftb0
Static OR Dynamic Linking of Native Binaries
I was a little unsatisfied with the "hack" used in the above examples to circumvent the need to launch programs without linking to C runtime initialization using that strange code shown above, i.e.
Code:
start() { exit( main() ); }
Moreover, for purposes of debugging applications running on the phone (using "gdbserver"), it simply seems easier to link statically - it allows you to step into the syscall library routines and actually see the assembler implementations wrapped around "STI" interrupts.
So, I spent some time experimenting, and came up with a Makefile that allows me to easily toggle between building an ARM executable linked statically or dynamically. Moreover, it lets "argc" and "argv" work they way they are supposed to, and also allows main() to do a return().
Here's an example Makefile, for a program "hello.c". Make sure you read the notes which follow it.
Code:
#
# FIX THESE (to match your installation)
# Top of the Android Source/build tree (retrieved w/ repo)
ANDSRCROOT := /home/user/android/repo-root
# link dynamically against the libraries shipped on the phone!
# e.g.: $cd /opt/android/Eris_libs/ruu1_16_605_1 ; adb pull /system/lib/
PHONELIBS := /opt/android/Eris_libs/ruu1_16_605_1/lib
# Choose one or the other; static is easiest for debugging use
LINKMODE := dynamic
#LINKMODE := static
# tools
CROSS_COMPILE := arm-eabi-
CC := $(CROSS_COMPILE)gcc
LD := $(CROSS_COMPILE)ld
AR := $(CROSS_COMPILE)ar
CXX := $(CROSS_COMPILE)c++
OBJDUMP := $(CROSS_COMPILE)objdump
RANLIB := $(CROSS_COMPILE)ranlib
READELF := $(CROSS_COMPILE)readelf
# Note STATLIBROOT is relative to the Android Source root (ANDSRCROOT)
STATLIBROOT := out/target/product/generic/obj/STATIC_LIBRARIES
INCLUDE := -I $(ANDSRCROOT)/bionic/libc/include \
-I $(ANDSRCROOT)/bionic/libc/arch-arm/include \
-I $(ANDSRCROOT)/bionic/libc/kernel/common \
-I $(ANDSRCROOT)/bionic/libc/kernel/arch-arm
ifeq ($(LINKMODE),dynamic)
LIBDIRS := -L $(PHONELIBS)
else
LIBDIRS := -L $(ANDSRCROOT)/prebuilt/linux-x86/toolchain/arm-eabi-4.2.1/lib/gcc/arm-eabi/4.2.1 \
-L $(ANDSRCROOT)/$(STATLIBROOT)/libc_intermediates \
-L $(ANDSRCROOT)/$(STATLIBROOT)/libc_common_intermediates
endif
ifeq ($(LINKMODE),dynamic)
CRTBEG := $(ANDSRCROOT)/out/target/product/generic/obj/lib/crtbegin_dynamic.o
LDFLAGS := -rpath /system/lib -rpath-link /system/lib --dynamic-linker /system/bin/linker
EXTLIBS := -lc -ldl
else
CRTBEG := $(ANDSRCROOT)/out/target/product/generic/obj/lib/crtbegin_static.o
LDFLAGS := -static
EXTLIBS := -lc -lgcc -lc_common
endif
CRTEND := $(ANDSRCROOT)/out/target/product/generic/obj/lib/crtend_android.o
CFLAGS := -g -Wall
%.o: %.c
$(CC) -c $(INCLUDE) \
$(CFLAGS) $< -o [email protected]
%.s: %.c
$(CC) -S -c $(INCLUDE) \
$(CFLAGS) $< -o [email protected]
all: hello
hello: hello.o
$(LD) $(LDFLAGS) \
-o [email protected] --entry=_start -nostdlib \
$(CRTBEG) \
$^ \
$(CRTEND) \
$(LIBDIRS) $(EXTLIBS)
This makefile has certain assumptions built into it:
(1) Static Linkage
If you are going to link statically, you will need to have already built the entire Android source tree - the Android NDK does not provide any static libraries (In the OP I provided instructions on how to do this download and build the Android "Cupcake" release.)
(2) Dynamic Linking
If you want to compile code which is "as close to the phone as possible" then there is really only one way to do that: compile against the headers that HTC used, and perform linking against the dynamic libraries that you literally pull off the phone ("adb pull /system/lib").
There's only one problem with this strategy: HTC did not release their copy of the bionic (or other library) source code, so you are forced to punt... the second-best choice is to use headers from the Android (Cupcake) source tree. So... you will notice that for both the dynamic-link or static-link cases in the above makefile, the $(INCLUDE) paths used during compilation come from the Android source tree.
bftb0
PS I guess there is a mechanism to configure the top-level "make" of the Android source tree for not only a target type (defaults to "arm"), but also a "machine" dependency. I didn't research that, as I have only built user-space code. I'm doubt there should be any differences at the syscall interface API - excepting perhaps things like ptrace() which have a machine dependency (register structures, etc).
bftb0 said:
Because of the lineage between Linux and Android, the primary platform for compilation of the kernel and other ARM instruction-set binaries ("native" code) has been on Linux. It appears (at the moment...reading between the lines) that Google engineers are using Ubuntu 8.04 LTS as their choice of Linux platform for maintaining Android kernel & utilities code... so, in principle, it is the "best supported" platform for doing "native" development work, if for no other reason than it's what Google has been using. (Not because it is somehow a "better" O/S, but rather because you are likely to run into fewer quirks, and have more resources on the internet who might have experienced the same difficulties that you run into.)
For instance, the folks that have been building kernel exploit programs have been using the Google "NDK". They are not writing/compiling those in Java - they are writing or compiling programs written in "C", and compiling them into native (ARM) object code.
I provided notes from my own installation for anyone considering "dipping their toe" into building Android kernels or native binaries using Linux as a host O/S - most forum readers are not going to be interested in doing that.
Note that Google now releases an NDK for Windows, Linux, and Mac OS/X. The strange thing about doing development on Windows using Cygwin is that if you have sufficient skills to do so - and are capable of resolving problems that inevitably crop up - then you probably already have sufficient skills to be using Unix/Linux in the first place. Sort of depends on your past experience, though. I'd be willing to bet that Devs with a history of doing WinMo development probably would prefer to climb the Android development learning curve by trying their hand with the Windows/Cygwin NDK because of their familiarity with other Windows-based development tools (IDEs, hex editors, assemblers, GUI generators, etc).
That reminds me though - I need to update this thread with something else.
Cheers
bftb0
Click to expand...
Click to collapse
Wow, i was a little off in this case. I was under the assumption y'all were somehow going to compile ubuntu to run on the eris. :O

[EXPERIMENTAL/TOOLS/GUIDE/ADV.] Toolchain gcc 4.6.3 Cygwin/Linux/OSX; kernel builds

The following contains binaries, and instructions for use of an experimental newer toolchain than those included in the android pre-built package.
This is provided to allow existing linux kernel developers experiment with the updated version of GCC (besides the complicated building instructions the code just has a small patch for a known issue with android and 4.6.* otherwise is directly from GNU (see build information below)
The packages I'm also providing to help developers current on windows (With cygwin but no other virtual environment) to start exploring android Linux kernel development for their devices. (In addition to a OSX toolchain for more advanced mac users)
due to the slight differences between kernels on different devices this How To is intended to be used for advanced users who can adjust for the differences required for the devices specific kernel.
I may add additional guides to this thread if I find a need for them.
[size=+1]Binary Toolchains[/size]
I have two versions of a GCC-4.6.3 toolchain
1) For x86 linux: toolchain-4.6.3.tar.bz2 (Sha1: c8c57aba6ad92e9acddf29ba8620ba880be09a81)
2) For Cygwin (windows): toolchain-4.6.3.cygwin.tar.bz2 (Sha1: 6947e1c1ba95195019f542eb8ba0708667b63eca)
3) For OSX (mac/darwin): toolchain-4.6.3.darwin.tar.bz2 (Sha1: 9a977f0672863fdd9501383a6ad1e30723281f68)
[size=-1]> The linux version was built via this script: http://pastebin.com/b2dZ8YtG (or in the included toolchain_notes.txt)
> The cygwin/darwin version uses the same source however has a slightly modified script (see the included toolchain_notes.txt for the updated script)[/size]
[size=+1]System Requirements[/size]
Note I have a 64bit debian linux box, and a 64bit version of WIndows7 Pro running cygwin, while I believe these binaries ought to be compatible with all x86 linux and cygwin installs these have not been tested by a wide number of people yet.
> Linux users: If you have a working android build environment likely no additional requirements are needed. In addition you must build any kernel/android utilities from a case sensitive filesystem or disk image.
> OSx users: the cygwin packages will give you an idea of what is required, please also see the README in the tar.bz2 about manually installing elf.h
> Cygwin users: as its unlikely you have compiled a kernel with cygwin up to this point you may wish to ensure the following packages are installed (as well as any cygwin recommends to be used with them):
vim
vim-common
make
cmake
lzop
gcc
gcc-core
gcc-g++
wget
git
git-compleation
libncurses-devel
python​
Cygwin users must also set their NTFS file partition to allow case sensitive files:
To do this open regedit and change:
HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\kernel\obcaseinsensitive
to 0
after this reboot and the NTFS kernel will allow cygwin to use case sensitive files (ie 'AbC' and 'aBc' as two different files)​
[size=+1]Advanced Kernel Building Guide[/size]
Since may devices are slightly different this can only be a high level kernel building guide
Please ask for any specific directions from the current kernel maintainer.
To most people who have built kernels before this will look familiar, the most important part is preparing your local environment to use the new toolchain,
1) If you have not already download the tar.bz2 above, (pick the one for the computer you are preparing to build kernels on)
2) extract the file (for the sake of this guide I will assume it is extracted into a ~/android directory)
ie on cygwin you might:
mkdir -p ~/android
cd ~/android
tar -xjvf toolchain-4.6.3.cygwin.tar.bz2
Note: steps one and two are just properly installing the toolchain, you will not need
to repeat them to build a different kernel.
2.b) OSX Only: check elf.h
open ~/android/toolchain-4.6.3/README in a text editor and check if elf.h is installed, otherwise manually install it as per the readme
3) fetch your kernel source into the ~/android directory and change into the
source codes root directory
(this can be via a git repo or tarball)
example if you wanted my ACER a100/a500 source you might run:
git clone git://github.com/ezterry/AcerTabKernel.git
cd AcerTabKernel
change this to match the source you are fetching
4) In the root directory of the kernel source (~/android/AcerTabKernel in the about a100/a500 example) update the environment for the cross compiler
add the toolchain to your path:
export PATH=$HOME/android/toolchain-4.6.3/bin:$PATH​
set the cross compile:
export ARCH=arm
export CROSS_COMPILE=arm-linux-androideabi-
export KERNEL_DIR=`pwd`​
(this will need to be done once for each terminal you use to run any of the following make commands)
5) Grab your configuration
From the device:
adb pull /proc/config.gz
gzip -dc config.gz > .config
or from a prepared configuration if it's included in your code base by running
make _defconfig
example for the a100/a500 code base is 'make vangogh_defconfig' for the a100 and 'make picasso_defconfig' for the a500
6) Customize configuration
just run menuconfig and use the UI to update settings
make menuconfig​
7) building the kernel (zImage)
This is normal at this point with 'make -j'
so for a quad core CPU you can run
make -j5​
(note: the wrong number in the -j argument will not harm the build but may slow down the building process by either using too few threads or needing to keep track of too many)
8) If it worked you will now have the kernel in arch/arm/boot/zImage
this can be injected into the boot.img (as the kernel, using an existing ramdisk) as is
If it failed for your kernel your kernel source may need one of the common patches
9) Building modules
the following will prepare the modules in subdirectory mod:
make modules
rm -rf mod
mkdir mod
cp `find ./ | grep .ko$` modules.order mod/​
After these commands [if no errors] you can simply copy the contents of mod/ to /system/lib/modules on your device, note it is recommended usually to remove the existing contents of /system/lib/modules unless there is a closed source module required from the previous build despite the new kernel.
[size=+1]Common Patches Required[/size]
If your kernel has not been built for the new toolchain or on cygwin before you may require some of these common patchs: (I've thus far only tested this on my Acer A100/A500 source)
wireless/bcm4329 for GCC-4.6.3:
https://github.com/ezterry/AcerTabKernel/commit/123f32e27e2c74f1c1789ae5d6d5a1c04e1e264c
linux kernel module patch for cygwin (broken elf.h):
https://github.com/ezterry/AcerTabKernel/commit/220db49593cf6b9f3b556e2f4b75b2f6d3ff556c
Error compiling security/smc/bridge_pub2sec.S (I required the cygwin elf patch and this patch to build the Franco galaxy nexus kernel)
0001-Fix-build-error-with-4.6.3-toolchain-smc-0.patch
(use 'git am 0001-Fix-build-error-with-4.6.3-toolchain-smc-0.patch' to apply)
OSX stat patches (fixes errors between GNU and BSD stat):
https://github.com/ezterry/AcerTabKernel/commit/0c49df3cc1a05a0ccd98201511cdc0534aaeb35a
Errors loading newly built modules (modules appear to build cleanly but wont install):
simply add -fno-pic to CFLAGS_MODULE
https://github.com/ezterry/AcerTabKernel/commit/c5ed0fcb014d36936a86ad253f15af43de2f644a
(I can add others here if highlighted to me, and as I find them)
[size=+1]Other Toolchain uses[/size]
The linux toolchain can be used to build android components, however this requires various manipulation to the android /build git repository as currently various other toolchains have hard coded paths into the prebuilt repo. If you intend to incorporate this into your build it may be best to inject the toolchain into your prebuilt repo rather than expect your users to download the links above, ensure to keep the compile notes as it explains how to get the source code to the toolchains)
On cygwin/osx it may also be possible to build android applications however I've not yet tested this as the scripts to make a proper build are complex when attempted outside the android build tree.
Excellent!!! thanks Man!!! Has been looking for one of these
Added in the OSX version of the toolchain (and some related patches)
Also if you are having problems with your modules built with this toolchain a CFLAG fixes it. (see note in common patches)
FINALLY!!! Great Instructions followed them to the T and BAM got my kernel compiled!!!
wow your toolchain is so small, many thanks, just compiled a kernel for my LG P500 gonna test it, thanks again
Bookmarked for testing when I wake up...
I can almost put: "Building under Windows is not currently supported." (quote from google), unofficially at least, out of my mind...
I have been spoiled by Windows for far too long I fear, my attempt for this last week at getting Linux setup and building CM9 has been nothing but a complete FAILURE, too many single line entrys for different distributions/package combo's, commands I dont know and cant find because of wildcard portions of them and lack of understanding, and not enough scripts like the wonderful Compile CM9 script someone put up (cant run it because all the pre-req's arent setup).
Good god Ill be jumping for joy if this works tomorrow on WinBlows!
EDIT: never mind, problem solved, what I need to know now won't be solved here
I wish i knew how to go about doing this..
Thanks
Thanks For ........... i Really need It .........
Hammerfest said:
Bookmarked for testing when I wake up...
I can almost put: "Building under Windows is not currently supported." (quote from google), unofficially at least, out of my mind...
I have been spoiled by Windows for far too long I fear, my attempt for this last week at getting Linux setup and building CM9 has been nothing but a complete FAILURE, too many single line entrys for different distributions/package combo's, commands I dont know and cant find because of wildcard portions of them and lack of understanding, and not enough scripts like the wonderful Compile CM9 script someone put up (cant run it because all the pre-req's arent setup).
Good god Ill be jumping for joy if this works tomorrow on WinBlows!
Click to expand...
Click to collapse
If you succeed tell me how to do it in a more familiar way
I get errors regading the processor not being supported?
brfield said:
I get errors regading the processor not being supported?
Click to expand...
Click to collapse
Sorry I can't support devs that have not learned cut copy and paste.
You probably forgot to export some of the environment variables or are just trying to run a arm binary on your PC and or a x86 binary on your arm device.
But why am I guessing? Why don't we know what you tried to run and what the actual text of the error was.. what type of kernel you tried to build, what you are running?
These packages are for developers if you feel like using them its time to learn to how to trouble shoot a problem and write a ticket to explain said problem clearly to others with at least some information to give us a chance to understand.
Sent from my Galaxy Nexus using Tapatalk 2
Great guide. Have the bcm4329 wireless module, so followed the tips and everything compiled and works!
Thanks!
one question,how to compiled android kernel with -O3 optimization?
jxxhwy said:
one question,how to compiled android kernel with -O3 optimization?
Click to expand...
Click to collapse
Um, in general its recommended you don't:
-O3 is not recommended for the kernel as many low level parts require the assembly code generated to remain as is and not be optimized as will be by some of the options -O3 enables thus likely reducing the stability of your kernel.
---
That said the menuconfig has an option to optimize for size (-Os) if enabled else -O2
For other optimization (including tuning for your cpu) you can add them to the CFLAGS_KERNEL/CFLAGS_MODULE in the make file.)
For -O3 like functionality you could add the increment to the line:
-finline-functions, -funswitch-loops, -fpredictive-commoning, -fgcse-after-reload, -ftreel-vectorize, -ftree-partial-pre and -fipa-cp-clone
-Ofast is -O3 with -ffast-math as well
If you do build with all the -O3 or-Ofast options ensure you test the kernel for stability and run some benchmarks. (as it may not actually be faster depending on the cache misses)
The first option I'd start pruning was the one mentioned in my reference below -fgcse-after-reload.
If you really insist on -O3 rather than just adding the optimization you want that are not in O2,it can be added also in the Makefile where the configure flag is checked and its added to KBUILD_CFLAGS
Obviously all and any of this is at your own risk, anything that breaks you have to find a way to fix it.
Reference:
Gcc optimize options:
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
Talk of O3 and the kernel (not android specific)
http://unix.stackexchange.com/questions/1597/compiling-gnu-linux-with-o3-optimization
ezterry,thank you very much!
I want to build cm9 kernel using toolchain 4.6.3.
How to replace the default GCC 4.4.3 to 4.6.3 version?
BTW,I use the way -- make bootimage
jxxhwy said:
ezterry,thank you very much!
I want to build cm9 kernel using toolchain 4.6.3.
How to replace the default GCC 4.4.3 to 4.6.3 version?
BTW,I use the way -- make bootimage
Click to expand...
Click to collapse
If you are asking in a cm9 build tree.. its a pain, best is to update the cm kernel makefile to point the build chain temporarily.
If you mean just to compile by hand as described in the op
Once the kernel is compiled find an anykernel update.zip or manually use mkbootimg or fastboot to merge it with the ram disk. Cm9 targets mkbootimg and unpackbootimg (if I'm not mistaken) will build the applications to unpack your current (or the default cm9) boot image and re-create them with your custom kernel built from hand.
Now,I runing script file:
#Let's make sure the environment is clean and ready to compile the kernel
echo "Cleaning house!!"
make mrproper
echo "House cleaned, lets build a kernel!!!"
#
# Lets set the kernel defconfig
echo "defconfig = cyanogenmod_iprj_defconfig"
make ARCH=arm cyanogenmod_iprj_defconfig
#
# Let's build a kernel
echo "Now compiling kernel, go get a soda! "
ARCH=arm CROSS_COMPILE=~/Android/sourcecm9/cm9/toolchain-4.6.3/bin/arm-linux-androideabi- make zImage -j4
#
if [ -f arch/arm/boot/zImage ]; then
echo "Plague has been compiled!!! You can find it in arch/arm/boot/zImage"
else
echo "Kernel did not compile, please check for errors!!"
fi
but,I got some error output:
/home/xxx/cm9/toolchain-4.6.3/bin/arm-linux-androideabi-ld: cannot find usr/initramfs_data.o: No such file or directory
thanks again!!!
I think that means there is an issue with your config..
Most android kernels require initramfs, but don't specify a file, as its provided by the bootloader.. However in your case it is trying to embed it into the kernel.
Sent from my A500 using Tapatalk 2
ezterry said:
I think that means there is an issue with your config..
Most android kernels require initramfs, but don't specify a file, as its provided by the bootloader.. However in your case it is trying to embed it into the kernel.
Sent from my A500 using Tapatalk 2
Click to expand...
Click to collapse
issue has been resolved by myslef.Thanks for your time.

[GUIDE]A Noob Guide On Building Your Own Custom Kernel on WIN10 (ARM & ARM64 & MTK)

[GUIDE]A Noob Guide On Building Your Own Custom Kernel on WIN10 (ARM & ARM64 & MTK)
1. INTRODUCTION:​
This is a guide to build your own custom kernel. Although I'm still a "noob" at this,
I've struggled a lot to build one as all the guides which I followed were not very clear.
So I hope this will be clear enough and as noob friendly as possible!​
You will learn how to:
- Build a kernel for arm and mediatek devices on windows 10
- Add feature
- Basic use of git
Prerequise :
- Updated windows 10 64bits (falls creators update)
- A decent computer with a decent internet speed
- Space on your HDD The minimum space for a kernel source (and its compiled code) is about 2 GB
- Minimal linux knowledge (Terminal, Commands etc)
- Your Brain
- And finally patience
2.Setting UP ENVIRONMENT:​
Installing ubuntu :
1 - Go in Settings -> Update and Security -> For developers and turn on developers mode then
2 - go in Control Panel > Programs > Turn Windows Features On Or Off and enable Windows subsystem for linux
3 - Reboot your computer
4 - launch linux subsystem now and let it download all it need and set up your password (remember it ! you'll need this password later)
5 - Go in microsoft app store and download Ubunutu by canonical group limited
6 - Open ubuntu (a windows with your name and computer name wil appear), congrats you installed ubuntu on windows 10 !
Seting up you environment :
1 - Type "apt-get update" (will update all repo for apps and dependencies)
From here it is nearly the same as my previous guide, but be careful there is some little changes
2 - Type "sudo apt-get install -y build-essential kernel-package libncurses5-dev bzip2" (will install all dependencies to build kernel)
3 - Check if dependencies are correctly installed :
- Then type "gcc"
If "gcc" is already installed, you should see "gcc : fatal error : no input file"
- Then type "make"
If "make" is already installed, you should see "make: *** no target specified and no makefile found. stop."
- Then type "git"
If "git" is already installed, you should see bunch of basic git commands
Now you're almost ready to start building your kernel!
Toolchains:
There are several types of toolchains (GCC, Linaro and few custom made ones)
Warning : Not every single device kernel will boot (or even compiles) with older or newer GCC
- For ARM:
We'll be using GCC 4.7 in this tutorial (link : https://android.googlesource.com/platform/prebuilts/gcc/linux-x86/arm/arm-eabi-4.7/ )
-Open terminal and type: "mkdir kernel"(Type the name you want, I used "kernel")
-Then type "cd kernel" (the name which you used above)
-Then type "git clone https://android.googlesource.com/platform/prebuilts/gcc/linux-x86/arm/arm-eabi-4.7"
-Wait till it finishes.
- For ARM 64:
For ARM 64 you need a 64 bit kernel compiler (there's "aarch64" in the name for telling that's a 64 bit compiler)
Exemple : https://releases.linaro.org/archive/13.07/components/toolchain/binaries/gcc-linaro-aarch64-linux-gnu-4.8-2013.07-1_linux.tar.xz
3.DOWNLOADING SOURCE FILES FOR YOUR DEVICE:​
Now you have to find a github that contains your kernel source.
Search on Google or XDA to find a kernel github repo for your device.
A kernel github looks like this: "https://github.com/atxoxx/android_kernel_samsung_msm8974/tree/xenomTW"
On the upper left side you can see branch: completed by a name
These are the different versions of the kernel/project (generally can be for testing, android version etc)
QUICK EXPLANATION OF FILES/FOLDERS:
- /arch/arm/configs : contains the config files for device (where you add option like new governors, features etc)
- /output/arch/arm/boot/ : Where zimage is stored (will explain that later)
- build.sh : Script to make the building much easier (will explain how it works later)
- /arm-cortex-linux-gnueabi-linaro_5.2-2015.11-2 : I put the toolchain in my kernel source making it easier to find (your kernel's toolchain name may be different)
If you don't have your kernel source yet, you need to download it.
Open terminal and make sure that you are in "kernel" folder (the one you previously created)
Then type in terminal : "git clone "URL of the github kernel" -b "name of the branch" "
For Example : "git clone https://github.com/atxoxx/android_kernel_samsung_msm8974 -b xenomTW"
Good! Now you have your kernel source!
4.BUILDING:​
For an easier way you can go to the location using your file explorer to : "/home/"name of your session"/kernel"
You'll see two folders (The Toolchain and The Kernel Source)
Go into your kernel source folder.
- For ARM:
Copy paste this:
#!/bin/bash
export ARCH=arm
export CROSS_COMPILE=
mkdir output
make -C $(pwd) O=output "name of defconfig and variant if needed"
make -j4 -C $(pwd) O=output
Click to expand...
Click to collapse
Explaination:
- #!/bin/bash: Tells the script to run in shell command
- export ARCH=arm: Defining which kernel architecture type it is (For example arm64 etc)
- export CROSS_COMPILE= : Locate where the toolchain is, it has to match the exact path to it and the dash ("-") in the end is really important ! (Almost everyone makes an error at this part!!!)
- mkdir output: Create a directory for storing compiled zimage
- make -C $(pwd) O=output : Defining defconfig for guiding kernel compilation (will explain later)
- make -j4 -C $(pwd) O=output: where the building start, "-j4" is how fast it'll compile, you have to setup this number according to your CPU !
- cp output/arch/arm/boot/Image $(pwd)/arch/arm/boot/zImage: This one is for moving image into the second path (thanks @Has.007 for this infromation)
Click to expand...
Click to collapse
Example :
#!/bin/bash
export ARCH=arm
export CROSS_COMPILE=$(pwd)/arm-cortex-linux-gnueabi-linaro_5.2-2015.11-2/bin/arm-cortex-linux-gnueabi-
mkdir output
make -C $(pwd) O=output msm8974_sec_defconfig VARIANT_DEFCONFIG=msm8974_sec_ks01_skt_defconfig SELINUX_DEFCONFIG=selinux_defconfig
make -j4 -C $(pwd) O=output
cp output/arch/arm/boot/Image $(pwd)/arch/arm/boot/zImage
Click to expand...
Click to collapse
- For ARM 64:
Copy paste this:
#!/bin/bash
export ARCH=arm64
export CROSS_COMPILE="path to your toolchain" (it have to end by something like "nameofarch-something-")
mkdir output
make -C $(pwd) O=output "name of defconfig and variant if needed"
make -j4 -C $(pwd) O=output
Click to expand...
Click to collapse
Explaination:
- #!/bin/bash: Tells the script to run in shell command
- export ARCH=arm64: Defining which kernel architecture type it is (For example arm64 etc)
- export CROSS_COMPILE= : Locate where the toolchain is, it has to match the exact path to it and the dash ("-") in the end is really important ! (Almost everyone makes an error at this part!!!)
- mkdir output: Create a directory for storing compiled zimage
- make -C $(pwd) O=output : Defining defconfig for guiding kernel compilation (will explain later)
- make -j4 -C $(pwd) O=output: where the building start, "-j4" is how fast it'll compile, you have to setup this number according to your CPU !
- cp output/arch/arm/boot/Image $(pwd)/arch/arm/boot/zImage: This one is for moving image into the second path (thanks @Has.007 for this infromation)
Click to expand...
Click to collapse
Example :
#!/bin/bash
export ARCH=arm64
export CROSS_COMPILE=$(pwd)gcc-linaro-aarch64-linux-gnu-4.8-2013.07-1_linux\bin\aarch64-linux-gnu-
mkdir output
make -C $(pwd) O=output msm8974_sec_defconfig VARIANT_DEFCONFIG=msm8974_sec_ks01_skt_defconfig SELINUX_DEFCONFIG=selinux_defconfig
make -j4 -C $(pwd) O=output
cp output/arch/arm/boot/Image $(pwd)/arch/arm/boot/zImage
Click to expand...
Click to collapse
- For Mediatek:
Copy paste this:
#!/bin/bash
export CROSS_COMPILE="path to your toolchain" (it have to end by something like "nameofarch-something-")
export ARCH=arm ARCH_MTK_PLATFORM=
make "name of defconfig and variant if needed"
make -j4
Click to expand...
Click to collapse
Explaination:
- #!/bin/bash: Tells the script to run in shell command
- export CROSS_COMPILE= : Locate where the toolchain is, it has to match the exact path to it and the dash ("-") in the end is really important ! (Almost everyone makes an error at this part!!!)
- export ARCH=arm ARCH_MTK_PLATFORM=: Defining which kernel architecture type it is (For example arm64 etc) "ARCH_MTK_PLATFORM=" is for specifying which mediatek platform it is
- make _defconfig : Defining which defconfig to use (will explain later)
- make -j4: where the building starts, "-j4" is how fast it'll compile, you have to setup this number according to your CPU !
Click to expand...
Click to collapse
Example :
#!/bin/bash
export CROSS_COMPILE=$(pwd)/arm-eabi-4.8/bin/arm-eabi-
export ARCH=arm ARCH_MTK_PLATFORM=mt6580
make pixi4_4_8g1g_defconfig
make -j4
Click to expand...
Click to collapse
When these step are done make sure you are in kernel folder in terminal and type "sudo bash build.sh" then type your password you set up in first launch of linux subsytem
(sudo is important, windows 10 ubuntu seems to handle permission differently than native ubuntu)
The compilation have started
If it compiles without any problems:
Wait till it finishes (it'll say something like "zimage is ready")
If you followed arm and arm64:
Then go to "/Output/arch/arm/boot/" to find your zimage.
Click to expand...
Click to collapse
If you followed mediatek:
Then go to "/arch/arm/boot/" to find your zimage.
Click to expand...
Click to collapse
Caution : Not all kernel build Zimage, it can build image or other compressed image
If in case you have any errors:
Check and see what it says, generally it'll tell you where the error is.
If the text is going too fast reduce the -j number as explained above.
For reference I compile with an AMD Phenom X4 3.4GHz,Samsung HDD and 8GB of RAM and it takes around 10min to build
It is recommanded to type in the terminal "make clean" and "make mrproper" before compiling again​
5.MAKING THE KERNEL BOOT:​
You have 2 solutions here:
1) You can use @osm0sis anykernel method, which is explainded here: "https://forum.xda-developers.com/showthread.php?t=2670512" (A huge shoutout to him!)
OR
2) You can unpack the boot.img (from the same rom (CM, touchwizz,sense etc) and android version) and swap Zimage in it explained here : "https://forum.xda-developers.com/showthread.php?t=2073775" (thanks again to @osm0sis !)
Before flashing the kernel which you've made, backup your "stock" boot.img and Then flash your kernel and see if it boots!
6.HOW TO ADD FEATURE TO KERNEL WORK:​
Here starts the most interesting part! Now let's see how it works:
Basically you can add: Governors, IO Schedulers, Overclock the CPU & Many Tweaks...
Checkout the github section (Section 7) to see how to add them properly.
Here's an exemple for adding a governor (this one is called Intellimm) : https://github.com/gugu0das/android...mmit/7186ee60c171b06ea3a027e8383be392d3186bb1
The text in the blue box is the commit description (generally tells you about the changelog, general information and who originally made the commit)
The other text boxes tell you about where and which files have been modified/changed.
Everything in green indicates what has been added.
Everything in red indicates what has been deleted.
We can see in the first 2 text boxes that in "arch/arm/configs/" "msm8974_sec_defconfig" and "cm_msm8974_sec_defconfig" have been modified.
Between the lines 140 and 141 of this files this text has been added : "CONFIG_CPU_FREQ_GOV_INTELLIMM=y"
(This line is for enabling Intellimm when you're compiling your kernel)
Same technique applies to the other text boxes (what has been added and deleted and it's location)
Depending on the features you add, more or less files can be modified, added or deleted.
So to sum it up, a Commit let's you see all the changes which have been made and everything else!
7.GUIDE TO GITHUB:​
For this, I'll direct you over to this awsome guide made by @eagleeyetom !
8.GPL (IMPORTANT !!!):​
The Rules as they apply on XDA
As XDA has no legal power to uphold the GPL (and frankly we want to stay as far away from doing so as possible), we can’t force any of our users to abide by the GPL. However it is in XDA’s interests as well as the interests of our developer-base to ensure all GPL-derived materials hosted or linked on XDA comply fully with the GPL.
GPL-derived materials that do not come with the complete sources used to compile the GPL components are considered warez, and will be treated as such under forum rule 6 and 9.
If you use GPL components, but do not make any modifications to them whatsoever, you should provide a link to the original source of your GPL code.
Sources accompanying a release should be complete, and contain all the necessary source code for any modules, scripts or definition files. Complete sources will be defined as those which compile correctly and completely against the platform for which the software is distributed, and which contain any and all modifications made to the released General Public Licenced code. The source code supplied should be the exact version for which the source code is being requested, complete with all modifications.
EXAMPLE: Here’s a bit of code that could be used as a template to post your releases
<Kernel Or Author Name> <Kernel Nr>:
<Source>|<ReadMe>|<Credits>|<Other>
The Very Quick Summary of General Public License (GPL)
The text of the GPL Licence itself will be used to reach any final conclusion regarding any disputes over GPL Licenced materials. The above is a summary of what XDA expects of members using GPL code, and the complete text can be read at the GNU website.
The GPL states that anyone who modifies GPL licenced code is required to make available the sources used to compile it. This is to further improve and encourage collaborative work, as well as to ensure that the best code possible is produced, and to encourage peer-review of all work. This benefits both developers and end users in numerous ways, including:
Allowing anyone to verify the code they are trusting with their data, and its authenticity
Encouraging community collaboration to produce faster fixes and updates, and better code
Helping bring new developments from other devices and fields to your own, letting you benefit from new code that wouldn’t have been available without this sharing.
The GPL imparts great freedom for GPL end users. It ensures innovation is never stifled and no project is dependent upon any single developer.
It is in everyone’s interest for the GPL to be adhered to, as it gives us all better ROMs, better transparency, and a better atmosphere for developers to work together to make great code.
Click to expand...
Click to collapse
THANKS :​
- @ravish_919 : For testing and correcting this guide
- @karkasss : As my friend and support
- @gugu0das : For helping me a lot when I tried to build my kernel
- @eagleeyetom : For his awsome github guide
- @osm0sis For his aswsome anykernel solution
- @kirito9 : Huge thanks to him for providing mediatek guide !
- @F4uzan : Huge thanks to him for giving me a lot of useful information to fill this guide !
- @sunilpaulmathew : For providing an advanced method to rename your kernel ! (again)
- @nathanchance : For a proper kernel naming method
- @RendyAK and @DroidThug : For correcting me about "#!/bin/bash"
- @ahmed.ismael : For helping me, giving feedback and his huge support !
- Microsoft and canonical for the windows linux subsystem documentation
- All the developers for their hard work !
- XDA and The Community!
TIPS AND TRICKS​
1. You can use a copy of a defconfig file with different setup :
Usage : Use a "stock" one and use another one with esperimental feature for testing without altering original defconfig
Exemple : copy "stock" defconfig and in copied one add a governor see if it compile and work
How to do : Create a second build.sh with modified defconfig name !
2. Change kernel name and version :
Simple method :​Edit this line "CONFIG_LOCALVERSION="-" after - in your defconfig
Exemple : CONFIG_LOCALVERSION="-XenomTW-3.2.6"
Advanced methods :​
Method 1 :
1. Go in Makefile in the root folder of your kernel source
2. Add
CONFIG_LOCALVERSION="nameofyourkernel"
LOCALVERSION="versionofyourkernel"
Click to expand...
Click to collapse
Exemple :
VERSION = 4
PATCHLEVEL = 4
SUBLEVEL = 127
EXTRAVERSION =
CONFIG_LOCALVERSION="-FlashKernel"
export LOCALVERSION="-v1.00"
Click to expand...
Click to collapse
Caution ! Never touch or edit VERSION, PATCHLEVEL, SUBLEVEL, and EXTRAVERSION !
Click to expand...
Click to collapse
Method 2 :
1. Go in "scripts/mkcompile_h"
2. Add
LINUX_COMPILE_BY="nameofyourchoice"
LINUX_COMPILE_HOST="nameofyourchoice"
Exemple
Click to expand...
Click to collapse
3. Solve problem with PATH :
If you encounter "IS YOUR PATH CORRECT" problem try in terminal :
"export PATH="pathtotoolchainlocation"/bin:$PATH"
Exemple : export PATH=/home/3lambda/kernel/M8_Kernel/arm-eabi-4.7/bin:$PATH
4. Access ubuntu folders :
Path location to ubuntu folder is : C:\Users"NAME"\AppData\Local\Packages\CanonicalGroupLimited.UbuntuonWindows_79rhkp1fndgsc\LocalState\rootfs\home
Caution ! Editing files here directly from windows may break permission, you'll have to fix them if so (look on google on how to)
More to come...
Edit and update are coming, I may have forgot things let me know
Feed back also appreciated
highly appreciated
thank you
Good guide although I would say the advanced method for changing the kernel name is making totally unnecessary edits to the source code. There is already a framework in place for configuring the version string however you want. Editing EXTRAVERSION could result in conflicts during stable merges. The version gets generated in the following order:
Code:
$(VERSION).$(PATCHLEVEL).$(SUBLEVEL)$(EXTRAVERSION)$(CONFIG_LOCALVERSION)$(LOCALVERSION)
VERSION, PATCHLEVEL, SUBLEVEL, and EXTRAVERSION are set in the main Makefile, the first three should never be touched. CONFIG_LOCALVERSION and LOCALVERSION should be what the user sets.
For example:
Code:
VERSION = 4
PATCHLEVEL = 4
SUBLEVEL = 127
EXTRAVERSION =
CONFIG_LOCALVERSION="-FlashKernel"
export LOCALVERSION="-v1.00"
would result in the following output:
Code:
4.4.127-FlashKernel-v1.00
nathanchance said:
Good guide although I would say the advanced method for changing the kernel name is making totally unnecessary edits to the source code. There is already a framework in place for configuring the version string however you want. Editing EXTRAVERSION could result in conflicts during stable merges. The version gets generated in the following order:
VERSION, PATCHLEVEL, SUBLEVEL, and EXTRAVERSION are set in the main Makefile, the first three should never be touched. CONFIG_LOCALVERSION and LOCALVERSION should be what the user sets.
For example:
would result in the following output:
Click to expand...
Click to collapse
Thanks for pointing this out
I'll take a look when I'll have time
Nice! Been looking for something like this. XDA feed brought me here.
is it necessary do in win10? or you can simply do it in linux pc without WIN10?
thanks for the post!
tobarreh said:
is it necessary do in win10? or you can simply do it in linux pc without WIN10?
thanks for the post!
Click to expand...
Click to collapse
it should be done on linux
but windows can handle linux as a subsystem now so the guide for people like me who is dumb enough to use windows
seriously skip the ubuntu installation steps on sindows and start building your kernel by following the other steps :good:
Sent from my OnePlus 5 using XDA Labs
nathanchance said:
Good guide although I would say the advanced method for changing the kernel name is making totally unnecessary edits to the source code. There is already a framework in place for configuring the version string however you want. Editing EXTRAVERSION could result in conflicts during stable merges. The version gets generated in the following order:
Code:
$(VERSION).$(PATCHLEVEL).$(SUBLEVEL)$(EXTRAVERSION)$(CONFIG_LOCALVERSION)$(LOCALVERSION)
VERSION, PATCHLEVEL, SUBLEVEL, and EXTRAVERSION are set in the main Makefile, the first three should never be touched. CONFIG_LOCALVERSION and LOCALVERSION should be what the user sets.
For example:
Code:
VERSION = 4
PATCHLEVEL = 4
SUBLEVEL = 127
EXTRAVERSION =
CONFIG_LOCALVERSION="-FlashKernel"
export LOCALVERSION="-v1.00"
would result in the following output:
Code:
4.4.127-FlashKernel-v1.00
Click to expand...
Click to collapse
I personally like to define "LINUX_COMPILE_BY" and "LINUX_COMPILE_HOST" in "scripts/mkcompile_h" just like in this commit by @franciscofranco. By adding this
Code:
LINUX_COMPILE_BY="francisco"
LINUX_COMPILE_HOST="franco"
would display "[email protected]"
3lambda said:
Thanks for pointing this out
I'll take a look when I'll have time
Click to expand...
Click to collapse
Added new kernel naming method by @nathanchance and @sunilpaulmathew, huge thanks to them !
I'll need feedback see if some of these steps aren't clear or if I forgot things
I may also add a video soon and maybe screenshots
Stay tuned
sunilpaulmathew said:
I personally like to define "LINUX_COMPILE_BY" and "LINUX_COMPILE_HOST" in "scripts/mkcompile_h" just like in this commit by @franciscofranco. By adding this
Code:
LINUX_COMPILE_BY="francisco"
LINUX_COMPILE_HOST="franco"
would display "[email protected]"
Click to expand...
Click to collapse
He stopped doing that after I pointed out the same thing can be achieved without any source code edits (since it would change it for everyone building your source)
Code:
export KBUILD_BUILD_USER=francisco
export KBUILD_BUILD_HOST=franco
From: https://github.com/torvalds/linux/blob/master/scripts/mkcompile_h
If I downloaded a zip file of my source code, how do I extract it, since this is no longer just cloning from Git?
https://github.com/gugu0das/android...mmit/7186ee60c171b06ea3a027e8383be392d3186bb1
link is dead . please update this part of the guide as it is the most important part for me . Thanks for this awesome guide. more updates to come
I'm really looking forward to any and all updates on this thread. I'm old and loosing my mind and all my "Re-Memories" too, so I need all the help I can get.... LOL
permission denied
* placed the toolchain in home folder *
when i initiate compilation it says permission denied
how do i fix?
kwshl said:
* placed the toolchain in home folder *
when i initiate compilation it says permission denied
how do i fix?
Click to expand...
Click to collapse
execute with 'sudo' make
otonieru said:
execute with 'sudo' make
Click to expand...
Click to collapse
that doesn't help, i did
kwshl said:
* placed the toolchain in home folder *
when i initiate compilation it says permission denied
how do i fix?
Click to expand...
Click to collapse
did you place it by doing a git clone or do a cp command ?
this will lessen the nuisance i hope
otonieru said:
did you place it by doing a git clone or do a cp command ?
Click to expand...
Click to collapse
[email protected]:/mnt/g/linux/oreo# bash k.sh
make: execvp: /home/kwshl/aarch64-linux-android-4.9/bin/aarch64-linux-android-gcc: Permission denied
HOSTCC scripts/basic/fixdep
HOSTCC scripts/basic/bin2c

Samsung Galaxy Grand Duos Oreo Kernel Source

Samsung Galaxy Grand Duos Oreo Kernel Source​
download link-> bottom of the thread.
Linux kernel release 3.x <http://kernel.org/>
These are the release notes for Linux version 3. Read them carefully,
as they tell you what this is all about, explain how to install the
kernel, and what to do if something goes wrong!!
WHAT IS LINUX?
Linux is a clone of the operating system Unix, written from scratch by
Linus Torvalds with assistance from a loosely-knit team of hackers across
the Net. It aims towards POSIX and Single UNIX Specification compliance.
It has all the features you would expect in a modern fully-fledged Unix,
including true multitasking, virtual memory, shared libraries, demand
loading, shared copy-on-write executables, proper memory management,
and multistack networking including IPv4 and IPv6.
It is distributed under the GNU General Public License - see the
accompanying COPYING file for more details.
ON WHAT HARDWARE DOES IT RUN?
Although originally developed first for 32-bit x86-based PCs (386 or higher),
today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and
UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell,
IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64, AXIS CRIS,
Xtensa, Tilera TILE, AVR32 and Renesas M32R architectures.
Linux is easily portable to most general-purpose 32- or 64-bit architectures
as long as they have a paged memory management unit (PMMU) and a port of the
GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has
also been ported to a number of architectures without a PMMU, although
functionality is then obviously somewhat limited.
Linux has also been ported to itself. You can now run the kernel as a
userspace application - this is called UserMode Linux (UML).
DOCUMENTATION:
- There is a lot of documentation available both in electronic form on
the Internet and in books, both Linux-specific and pertaining to
general UNIX questions. I'd recommend looking into the documentation
subdirectories on any Linux FTP site for the LDP (Linux Documentation
Project) books. This README is not meant to be documentation on the
system: there are much better sources available.
- There are various README files in the Documentation/ subdirectory:
these typically contain kernel-specific installation notes for some
drivers for example. See Documentation/00-INDEX for a list of what
is contained in each file. Please read the Changes file, as it
contains information about the problems, which may result by upgrading
your kernel.
- The Documentation/DocBook/ subdirectory contains several guides for
kernel developers and users. These guides can be rendered in a
number of formats: PostScript (.ps), PDF, HTML, & man-pages, among others.
After installation, "make psdocs", "make pdfdocs", "make htmldocs",
or "make mandocs" will render the documentation in the requested format.
INSTALLING the kernel source:
- If you install the full sources, put the kernel tarball in a
directory where you have permissions (eg. your home directory) and
unpack it:
gzip -cd linux-3.X.tar.gz | tar xvf -
or
bzip2 -dc linux-3.X.tar.bz2 | tar xvf -
Replace "XX" with the version number of the latest kernel.
Do NOT use the /usr/src/linux area! This area has a (usually
incomplete) set of kernel headers that are used by the library header
files. They should match the library, and not get messed up by
whatever the kernel-du-jour happens to be.
- You can also upgrade between 3.x releases by patching. Patches are
distributed in the traditional gzip and the newer bzip2 format. To
install by patching, get all the newer patch files, enter the
top level directory of the kernel source (linux-3.x) and execute:
gzip -cd ../patch-3.x.gz | patch -p1
or
bzip2 -dc ../patch-3.x.bz2 | patch -p1
(repeat xx for all versions bigger than the version of your current
source tree, _in_order_) and you should be ok. You may want to remove
the backup files (xxx~ or xxx.orig), and make sure that there are no
failed patches (xxx# or xxx.rej). If there are, either you or me has
made a mistake.
Unlike patches for the 3.x kernels, patches for the 3.x.y kernels
(also known as the -stable kernels) are not incremental but instead apply
directly to the base 3.x kernel. Please read
Documentation/applying-patches.txt for more information.
Alternatively, the script patch-kernel can be used to automate this
process. It determines the current kernel version and applies any
patches found.
linux/scripts/patch-kernel linux
The first argument in the command above is the location of the
kernel source. Patches are applied from the current directory, but
an alternative directory can be specified as the second argument.
- If you are upgrading between releases using the stable series patches
(for example, patch-3.x.y), note that these "dot-releases" are
not incremental and must be applied to the 3.x base tree. For
example, if your base kernel is 3.0 and you want to apply the
3.0.3 patch, you do not and indeed must not first apply the
3.0.1 and 3.0.2 patches. Similarly, if you are running kernel
version 3.0.2 and want to jump to 3.0.3, you must first
reverse the 3.0.2 patch (that is, patch -R) _before_ applying
the 3.0.3 patch.
You can read more on this in Documentation/applying-patches.txt
- Make sure you have no stale .o files and dependencies lying around:
cd linux
make mrproper
You should now have the sources correctly installed.
SOFTWARE REQUIREMENTS
Compiling and running the 3.x kernels requires up-to-date
versions of various software packages. Consult
Documentation/Changes for the minimum version numbers required
and how to get updates for these packages. Beware that using
excessively old versions of these packages can cause indirect
errors that are very difficult to track down, so don't assume that
you can just update packages when obvious problems arise during
build or operation.
BUILD directory for the kernel:
When compiling the kernel all output files will per default be
stored together with the kernel source code.
Using the option "make O=output/dir" allow you to specify an alternate
place for the output files (including .config).
Example:
kernel source code: /usr/src/linux-3.N
build directory: /home/name/build/kernel
To configure and build the kernel use:
cd /usr/src/linux-3.N
make O=/home/name/build/kernel menuconfig
make O=/home/name/build/kernel
sudo make O=/home/name/build/kernel modules_install install
Please note: If the 'O=output/dir' option is used then it must be
used for all invocations of make.
CONFIGURING the kernel:
Do not skip this step even if you are only upgrading one minor
version. New configuration options are added in each release, and
odd problems will turn up if the configuration files are not set up
as expected. If you want to carry your existing configuration to a
new version with minimal work, use "make oldconfig", which will
only ask you for the answers to new questions.
- Alternate configuration commands are:
"make config" Plain text interface.
"make menuconfig" Text based color menus, radiolists & dialogs.
"make nconfig" Enhanced text based color menus.
"make xconfig" X windows (Qt) based configuration tool.
"make gconfig" X windows (Gtk) based configuration tool.
"make oldconfig" Default all questions based on the contents of
your existing ./.config file and asking about
new config symbols.
"make silentoldconfig"
Like above, but avoids cluttering the screen
with questions already answered.
Additionally updates the dependencies.
"make defconfig" Create a ./.config file by using the default
symbol values from either arch/$ARCH/defconfig
or arch/$ARCH/configs/${PLATFORM}_defconfig,
depending on the architecture.
"make ${PLATFORM}_defconfig"
Create a ./.config file by using the default
symbol values from
arch/$ARCH/configs/${PLATFORM}_defconfig.
Use "make help" to get a list of all available
platforms of your architecture.
"make allyesconfig"
Create a ./.config file by setting symbol
values to 'y' as much as possible.
"make allmodconfig"
Create a ./.config file by setting symbol
values to 'm' as much as possible.
"make allnoconfig" Create a ./.config file by setting symbol
values to 'n' as much as possible.
"make randconfig" Create a ./.config file by setting symbol
values to random values.
You can find more information on using the Linux kernel config tools
in Documentation/kbuild/kconfig.txt.
NOTES on "make config":
- having unnecessary drivers will make the kernel bigger, and can
under some circumstances lead to problems: probing for a
nonexistent controller card may confuse your other controllers
- compiling the kernel with "Processor type" set higher than 386
will result in a kernel that does NOT work on a 386. The
kernel will detect this on bootup, and give up.
- A kernel with math-emulation compiled in will still use the
coprocessor if one is present: the math emulation will just
never get used in that case. The kernel will be slightly larger,
but will work on different machines regardless of whether they
have a math coprocessor or not.
- the "kernel hacking" configuration details usually result in a
bigger or slower kernel (or both), and can even make the kernel
less stable by configuring some routines to actively try to
break bad code to find kernel problems (kmalloc()). Thus you
should probably answer 'n' to the questions for
"development", "experimental", or "debugging" features.
COMPILING the kernel:
- Make sure you have at least gcc 3.2 available.
For more information, refer to Documentation/Changes.
Please note that you can still run a.out user programs with this kernel.
- Do a "make" to create a compressed kernel image. It is also
possible to do "make install" if you have lilo installed to suit the
kernel makefiles, but you may want to check your particular lilo setup first.
To do the actual install you have to be root, but none of the normal
build should require that. Don't take the name of root in vain.
- If you configured any of the parts of the kernel as `modules', you
will also have to do "make modules_install".
- Verbose kernel compile/build output:
Normally the kernel build system runs in a fairly quiet mode (but not
totally silent). However, sometimes you or other kernel developers need
to see compile, link, or other commands exactly as they are executed.
For this, use "verbose" build mode. This is done by inserting
"V=1" in the "make" command. E.g.:
make V=1 all
To have the build system also tell the reason for the rebuild of each
target, use "V=2". The default is "V=0".
- Keep a backup kernel handy in case something goes wrong. This is
especially true for the development releases, since each new release
contains new code which has not been debugged. Make sure you keep a
backup of the modules corresponding to that kernel, as well. If you
are installing a new kernel with the same version number as your
working kernel, make a backup of your modules directory before you
do a "make modules_install".
Alternatively, before compiling, use the kernel config option
"LOCALVERSION" to append a unique suffix to the regular kernel version.
LOCALVERSION can be set in the "General Setup" menu.
- In order to boot your new kernel, you'll need to copy the kernel
image (e.g. .../linux/arch/i386/boot/bzImage after compilation)
to the place where your regular bootable kernel is found.
- Booting a kernel directly from a floppy without the assistance of a
bootloader such as LILO, is no longer supported.
If you boot Linux from the hard drive, chances are you use LILO which
uses the kernel image as specified in the file /etc/lilo.conf. The
kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or
/boot/bzImage. To use the new kernel, save a copy of the old image
and copy the new image over the old one. Then, you MUST RERUN LILO
to update the loading map!! If you don't, you won't be able to boot
the new kernel image.
Reinstalling LILO is usually a matter of running /sbin/lilo.
You may wish to edit /etc/lilo.conf to specify an entry for your
old kernel image (say, /vmlinux.old) in case the new one does not
work. See the LILO docs for more information.
After reinstalling LILO, you should be all set. Shutdown the system,
reboot, and enjoy!
If you ever need to change the default root device, video mode,
ramdisk size, etc. in the kernel image, use the 'rdev' program (or
alternatively the LILO boot options when appropriate). No need to
recompile the kernel to change these parameters.
- Reboot with the new kernel and enjoy.
IF SOMETHING GOES WRONG:
- If you have problems that seem to be due to kernel bugs, please check
the file MAINTAINERS to see if there is a particular person associated
with the part of the kernel that you are having trouble with. If there
isn't anyone listed there, then the second best thing is to mail
them to me ([email protected]), and possibly to any other
relevant mailing-list or to the newsgroup.
- In all bug-reports, *please* tell what kernel you are talking about,
how to duplicate the problem, and what your setup is (use your common
sense). If the problem is new, tell me so, and if the problem is
old, please try to tell me when you first noticed it.
- If the bug results in a message like
unable to handle kernel paging request at address C0000010
Oops: 0002
EIP: 0010:XXXXXXXX
eax: xxxxxxxx ebx: xxxxxxxx ecx: xxxxxxxx edx: xxxxxxxx
esi: xxxxxxxx edi: xxxxxxxx ebp: xxxxxxxx
ds: xxxx es: xxxx fs: xxxx gs: xxxx
Pid: xx, process nr: xx
xx xx xx xx xx xx xx xx xx xx
or similar kernel debugging information on your screen or in your
system log, please duplicate it *exactly*. The dump may look
incomprehensible to you, but it does contain information that may
help debugging the problem. The text above the dump is also
important: it tells something about why the kernel dumped code (in
the above example it's due to a bad kernel pointer). More information
on making sense of the dump is in Documentation/oops-tracing.txt
- If you compiled the kernel with CONFIG_KALLSYMS you can send the dump
as is, otherwise you will have to use the "ksymoops" program to make
sense of the dump (but compiling with CONFIG_KALLSYMS is usually preferred).
This utility can be downloaded from
ftp://ftp.<country>.kernel.org/pub/linux/utils/kernel/ksymoops/ .
Alternately you can do the dump lookup by hand:
- In debugging dumps like the above, it helps enormously if you can
look up what the EIP value means. The hex value as such doesn't help
me or anybody else very much: it will depend on your particular
kernel setup. What you should do is take the hex value from the EIP
line (ignore the "0010:"), and look it up in the kernel namelist to
see which kernel function contains the offending address.
To find out the kernel function name, you'll need to find the system
binary associated with the kernel that exhibited the symptom. This is
the file 'linux/vmlinux'. To extract the namelist and match it against
the EIP from the kernel crash, do:
nm vmlinux | sort | less
This will give you a list of kernel addresses sorted in ascending
order, from which it is simple to find the function that contains the
offending address. Note that the address given by the kernel
debugging messages will not necessarily match exactly with the
function addresses (in fact, that is very unlikely), so you can't
just 'grep' the list: the list will, however, give you the starting
point of each kernel function, so by looking for the function that
has a starting address lower than the one you are searching for but
is followed by a function with a higher address you will find the one
you want. In fact, it may be a good idea to include a bit of
"context" in your problem report, giving a few lines around the
interesting one.
If you for some reason cannot do the above (you have a pre-compiled
kernel image or similar), telling me as much about your setup as
possible will help. Please read the REPORTING-BUGS document for details.
- Alternately, you can use gdb on a running kernel. (read-only; i.e. you
cannot change values or set break points.) To do this, first compile the
kernel with -g; edit arch/i386/Makefile appropriately, then do a "make
clean". You'll also need to enable CONFIG_PROC_FS (via "make config").
After you've rebooted with the new kernel, do "gdb vmlinux /proc/kcore".
You can now use all the usual gdb commands. The command to look up the
point where your system crashed is "l *0xXXXXXXXX". (Replace the XXXes
with the EIP value.)
gdb'ing a non-running kernel currently fails because gdb (wrongly)
disregards the starting offset for which the kernel is compiled.
Download.​
OREO KERNEL SOURCE 3.x
credits:-
@osas514
@GHsR
vasanth36 said:
Samsung Galaxy Grand Duos Oreo Kernel Source​
download link-> bottom of the thread.
Linux kernel release 3.x <http://kernel.org/>
These are the release notes for Linux version 3. Read them carefully,
as they tell you what this is all about, explain how to install the
kernel, and what to do if something goes wrong!!
WHAT IS LINUX?
Linux is a clone of the operating system Unix, written from scratch by
Linus Torvalds with assistance from a loosely-knit team of hackers across
the Net. It aims towards POSIX and Single UNIX Specification compliance.
It has all the features you would expect in a modern fully-fledged Unix,
including true multitasking, virtual memory, shared libraries, demand
loading, shared copy-on-write executables, proper memory management,
and multistack networking including IPv4 and IPv6.
It is distributed under the GNU General Public License - see the
accompanying COPYING file for more details.
ON WHAT HARDWARE DOES IT RUN?
Although originally developed first for 32-bit x86-based PCs (386 or higher),
today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and
UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell,
IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64, AXIS CRIS,
Xtensa, Tilera TILE, AVR32 and Renesas M32R architectures.
Linux is easily portable to most general-purpose 32- or 64-bit architectures
as long as they have a paged memory management unit (PMMU) and a port of the
GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has
also been ported to a number of architectures without a PMMU, although
functionality is then obviously somewhat limited.
Linux has also been ported to itself. You can now run the kernel as a
userspace application - this is called UserMode Linux (UML).
DOCUMENTATION:
- There is a lot of documentation available both in electronic form on
the Internet and in books, both Linux-specific and pertaining to
general UNIX questions. I'd recommend looking into the documentation
subdirectories on any Linux FTP site for the LDP (Linux Documentation
Project) books. This README is not meant to be documentation on the
system: there are much better sources available.
- There are various README files in the Documentation/ subdirectory:
these typically contain kernel-specific installation notes for some
drivers for example. See Documentation/00-INDEX for a list of what
is contained in each file. Please read the Changes file, as it
contains information about the problems, which may result by upgrading
your kernel.
- The Documentation/DocBook/ subdirectory contains several guides for
kernel developers and users. These guides can be rendered in a
number of formats: PostScript (.ps), PDF, HTML, & man-pages, among others.
After installation, "make psdocs", "make pdfdocs", "make htmldocs",
or "make mandocs" will render the documentation in the requested format.
INSTALLING the kernel source:
- If you install the full sources, put the kernel tarball in a
directory where you have permissions (eg. your home directory) and
unpack it:
gzip -cd linux-3.X.tar.gz | tar xvf -
or
bzip2 -dc linux-3.X.tar.bz2 | tar xvf -
Replace "XX" with the version number of the latest kernel.
Do NOT use the /usr/src/linux area! This area has a (usually
incomplete) set of kernel headers that are used by the library header
files. They should match the library, and not get messed up by
whatever the kernel-du-jour happens to be.
- You can also upgrade between 3.x releases by patching. Patches are
distributed in the traditional gzip and the newer bzip2 format. To
install by patching, get all the newer patch files, enter the
top level directory of the kernel source (linux-3.x) and execute:
gzip -cd ../patch-3.x.gz | patch -p1
or
bzip2 -dc ../patch-3.x.bz2 | patch -p1
(repeat xx for all versions bigger than the version of your current
source tree, _in_order_) and you should be ok. You may want to remove
the backup files (xxx~ or xxx.orig), and make sure that there are no
failed patches (xxx# or xxx.rej). If there are, either you or me has
made a mistake.
Unlike patches for the 3.x kernels, patches for the 3.x.y kernels
(also known as the -stable kernels) are not incremental but instead apply
directly to the base 3.x kernel. Please read
Documentation/applying-patches.txt for more information.
Alternatively, the script patch-kernel can be used to automate this
process. It determines the current kernel version and applies any
patches found.
linux/scripts/patch-kernel linux
The first argument in the command above is the location of the
kernel source. Patches are applied from the current directory, but
an alternative directory can be specified as the second argument.
- If you are upgrading between releases using the stable series patches
(for example, patch-3.x.y), note that these "dot-releases" are
not incremental and must be applied to the 3.x base tree. For
example, if your base kernel is 3.0 and you want to apply the
3.0.3 patch, you do not and indeed must not first apply the
3.0.1 and 3.0.2 patches. Similarly, if you are running kernel
version 3.0.2 and want to jump to 3.0.3, you must first
reverse the 3.0.2 patch (that is, patch -R) _before_ applying
the 3.0.3 patch.
You can read more on this in Documentation/applying-patches.txt
- Make sure you have no stale .o files and dependencies lying around:
cd linux
make mrproper
You should now have the sources correctly installed.
SOFTWARE REQUIREMENTS
Compiling and running the 3.x kernels requires up-to-date
versions of various software packages. Consult
Documentation/Changes for the minimum version numbers required
and how to get updates for these packages. Beware that using
excessively old versions of these packages can cause indirect
errors that are very difficult to track down, so don't assume that
you can just update packages when obvious problems arise during
build or operation.
BUILD directory for the kernel:
When compiling the kernel all output files will per default be
stored together with the kernel source code.
Using the option "make O=output/dir" allow you to specify an alternate
place for the output files (including .config).
Example:
kernel source code: /usr/src/linux-3.N
build directory: /home/name/build/kernel
To configure and build the kernel use:
cd /usr/src/linux-3.N
make O=/home/name/build/kernel menuconfig
make O=/home/name/build/kernel
sudo make O=/home/name/build/kernel modules_install install
Please note: If the 'O=output/dir' option is used then it must be
used for all invocations of make.
CONFIGURING the kernel:
Do not skip this step even if you are only upgrading one minor
version. New configuration options are added in each release, and
odd problems will turn up if the configuration files are not set up
as expected. If you want to carry your existing configuration to a
new version with minimal work, use "make oldconfig", which will
only ask you for the answers to new questions.
- Alternate configuration commands are:
"make config" Plain text interface.
"make menuconfig" Text based color menus, radiolists & dialogs.
"make nconfig" Enhanced text based color menus.
"make xconfig" X windows (Qt) based configuration tool.
"make gconfig" X windows (Gtk) based configuration tool.
"make oldconfig" Default all questions based on the contents of
your existing ./.config file and asking about
new config symbols.
"make silentoldconfig"
Like above, but avoids cluttering the screen
with questions already answered.
Additionally updates the dependencies.
"make defconfig" Create a ./.config file by using the default
symbol values from either arch/$ARCH/defconfig
or arch/$ARCH/configs/${PLATFORM}_defconfig,
depending on the architecture.
"make ${PLATFORM}_defconfig"
Create a ./.config file by using the default
symbol values from
arch/$ARCH/configs/${PLATFORM}_defconfig.
Use "make help" to get a list of all available
platforms of your architecture.
"make allyesconfig"
Create a ./.config file by setting symbol
values to 'y' as much as possible.
"make allmodconfig"
Create a ./.config file by setting symbol
values to 'm' as much as possible.
"make allnoconfig" Create a ./.config file by setting symbol
values to 'n' as much as possible.
"make randconfig" Create a ./.config file by setting symbol
values to random values.
You can find more information on using the Linux kernel config tools
in Documentation/kbuild/kconfig.txt.
NOTES on "make config":
- having unnecessary drivers will make the kernel bigger, and can
under some circumstances lead to problems: probing for a
nonexistent controller card may confuse your other controllers
- compiling the kernel with "Processor type" set higher than 386
will result in a kernel that does NOT work on a 386. The
kernel will detect this on bootup, and give up.
- A kernel with math-emulation compiled in will still use the
coprocessor if one is present: the math emulation will just
never get used in that case. The kernel will be slightly larger,
but will work on different machines regardless of whether they
have a math coprocessor or not.
- the "kernel hacking" configuration details usually result in a
bigger or slower kernel (or both), and can even make the kernel
less stable by configuring some routines to actively try to
break bad code to find kernel problems (kmalloc()). Thus you
should probably answer 'n' to the questions for
"development", "experimental", or "debugging" features.
COMPILING the kernel:
- Make sure you have at least gcc 3.2 available.
For more information, refer to Documentation/Changes.
Please note that you can still run a.out user programs with this kernel.
- Do a "make" to create a compressed kernel image. It is also
possible to do "make install" if you have lilo installed to suit the
kernel makefiles, but you may want to check your particular lilo setup first.
To do the actual install you have to be root, but none of the normal
build should require that. Don't take the name of root in vain.
- If you configured any of the parts of the kernel as `modules', you
will also have to do "make modules_install".
- Verbose kernel compile/build output:
Normally the kernel build system runs in a fairly quiet mode (but not
totally silent). However, sometimes you or other kernel developers need
to see compile, link, or other commands exactly as they are executed.
For this, use "verbose" build mode. This is done by inserting
"V=1" in the "make" command. E.g.:
make V=1 all
To have the build system also tell the reason for the rebuild of each
target, use "V=2". The default is "V=0".
- Keep a backup kernel handy in case something goes wrong. This is
especially true for the development releases, since each new release
contains new code which has not been debugged. Make sure you keep a
backup of the modules corresponding to that kernel, as well. If you
are installing a new kernel with the same version number as your
working kernel, make a backup of your modules directory before you
do a "make modules_install".
Alternatively, before compiling, use the kernel config option
"LOCALVERSION" to append a unique suffix to the regular kernel version.
LOCALVERSION can be set in the "General Setup" menu.
- In order to boot your new kernel, you'll need to copy the kernel
image (e.g. .../linux/arch/i386/boot/bzImage after compilation)
to the place where your regular bootable kernel is found.
- Booting a kernel directly from a floppy without the assistance of a
bootloader such as LILO, is no longer supported.
If you boot Linux from the hard drive, chances are you use LILO which
uses the kernel image as specified in the file /etc/lilo.conf. The
kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or
/boot/bzImage. To use the new kernel, save a copy of the old image
and copy the new image over the old one. Then, you MUST RERUN LILO
to update the loading map!! If you don't, you won't be able to boot
the new kernel image.
Reinstalling LILO is usually a matter of running /sbin/lilo.
You may wish to edit /etc/lilo.conf to specify an entry for your
old kernel image (say, /vmlinux.old) in case the new one does not
work. See the LILO docs for more information.
After reinstalling LILO, you should be all set. Shutdown the system,
reboot, and enjoy!
If you ever need to change the default root device, video mode,
ramdisk size, etc. in the kernel image, use the 'rdev' program (or
alternatively the LILO boot options when appropriate). No need to
recompile the kernel to change these parameters.
- Reboot with the new kernel and enjoy.
IF SOMETHING GOES WRONG:
- If you have problems that seem to be due to kernel bugs, please check
the file MAINTAINERS to see if there is a particular person associated
with the part of the kernel that you are having trouble with. If there
isn't anyone listed there, then the second best thing is to mail
them to me ([email protected]), and possibly to any other
relevant mailing-list or to the newsgroup.
- In all bug-reports, *please* tell what kernel you are talking about,
how to duplicate the problem, and what your setup is (use your common
sense). If the problem is new, tell me so, and if the problem is
old, please try to tell me when you first noticed it.
- If the bug results in a message like
unable to handle kernel paging request at address C0000010
Oops: 0002
EIP: 0010:XXXXXXXX
eax: xxxxxxxx ebx: xxxxxxxx ecx: xxxxxxxx edx: xxxxxxxx
esi: xxxxxxxx edi: xxxxxxxx ebp: xxxxxxxx
ds: xxxx es: xxxx fs: xxxx gs: xxxx
Pid: xx, process nr: xx
xx xx xx xx xx xx xx xx xx xx
or similar kernel debugging information on your screen or in your
system log, please duplicate it *exactly*. The dump may look
incomprehensible to you, but it does contain information that may
help debugging the problem. The text above the dump is also
important: it tells something about why the kernel dumped code (in
the above example it's due to a bad kernel pointer). More information
on making sense of the dump is in Documentation/oops-tracing.txt
- If you compiled the kernel with CONFIG_KALLSYMS you can send the dump
as is, otherwise you will have to use the "ksymoops" program to make
sense of the dump (but compiling with CONFIG_KALLSYMS is usually preferred).
This utility can be downloaded from
ftp://ftp.<country>.kernel.org/pub/linux/utils/kernel/ksymoops/ .
Alternately you can do the dump lookup by hand:
- In debugging dumps like the above, it helps enormously if you can
look up what the EIP value means. The hex value as such doesn't help
me or anybody else very much: it will depend on your particular
kernel setup. What you should do is take the hex value from the EIP
line (ignore the "0010:"), and look it up in the kernel namelist to
see which kernel function contains the offending address.
To find out the kernel function name, you'll need to find the system
binary associated with the kernel that exhibited the symptom. This is
the file 'linux/vmlinux'. To extract the namelist and match it against
the EIP from the kernel crash, do:
nm vmlinux | sort | less
This will give you a list of kernel addresses sorted in ascending
order, from which it is simple to find the function that contains the
offending address. Note that the address given by the kernel
debugging messages will not necessarily match exactly with the
function addresses (in fact, that is very unlikely), so you can't
just 'grep' the list: the list will, however, give you the starting
point of each kernel function, so by looking for the function that
has a starting address lower than the one you are searching for but
is followed by a function with a higher address you will find the one
you want. In fact, it may be a good idea to include a bit of
"context" in your problem report, giving a few lines around the
interesting one.
If you for some reason cannot do the above (you have a pre-compiled
kernel image or similar), telling me as much about your setup as
possible will help. Please read the REPORTING-BUGS document for details.
- Alternately, you can use gdb on a running kernel. (read-only; i.e. you
cannot change values or set break points.) To do this, first compile the
kernel with -g; edit arch/i386/Makefile appropriately, then do a "make
clean". You'll also need to enable CONFIG_PROC_FS (via "make config").
After you've rebooted with the new kernel, do "gdb vmlinux /proc/kcore".
You can now use all the usual gdb commands. The command to look up the
point where your system crashed is "l *0xXXXXXXXX". (Replace the XXXes
with the EIP value.)
gdb'ing a non-running kernel currently fails because gdb (wrongly)
disregards the starting offset for which the kernel is compiled.
Download.​
OREO KERNEL SOURCE 3.x
credits:-
@osas514
@GHsR
Click to expand...
Click to collapse
How is it going to help us?
Repo deleted

[GUIDE] HOW TO BUILD ANDROID FROM SOURCE [2020 Edition]

[NOOB-FRIENDLY] HOW TO BUILD ANDROID FROM SOURCE CODE [2020 EDITION]
Introduction
Hi, my name is Varun, during the times I was building I faced some trouble building, and I thought it would be helpful if I put together a guide that covers every aspect of building. Many roms fundamentally differ so this is a generic guide, but when it comes to modifying device specific files you are going to have to refer to your rom developer or your device tree maintainer.
I see a lot of lead devs referring to older guides on xda, and felt like there should be a good reference thats more recent.
I have heavily depended upon Nathan Chance's Guide which can be found HERE. I feel like this may be a little intimidating for new builders hence this thread. I will slowly upload screenshots here as I find time. But for now this is what I have. You can find my guide HERE. If there are any changes to be made in this thread then it also needs to be changed on gh, so please do comment or make a pr and fix what is requested.
Table of Contents
1) Getting started
2) Prerequisites
3) Understanding the DOC
4) Preparing Linux environment
5) Getting the source
6) Getting device specific files
7) Building
GETTING STARTED
• This guide will help you understand the basics of rom building.
• You must have exprience with linux and terminal
• You must read everything at least once
• If you get stuck at any step, google is your best friend.
If you still struggle, these are places you can get help
1) This thread
2) GitHub
3) Other XDA threads
4) Telegram (Your SOC groups or Android Builders Help)
• Build only if you have time to spare, never rush through the learning stage
• Never think about skipping a step
• If you are planning to modify a ROM, always ask for permission
• If you are planning on including other peoples work in your rom always ask for permission
Prerequisites
• Your system should have at least 8GB RAM and 4 cores (Use Zram for 8gb ram devices)
• Strong internet connection. You will be downloading 50GB+ worth of files
• Ubuntu - this should be installed alongside a primary OS. NOT VM
• Minimum 250GB of free disk space (you can sync 1 ROMs and build for 3 devices at once)
• Git - Read some documentation
• Command Line - get yourself familiar, learn with CodeAcademy
Understanding This Doc
• Notes with background information will be given in italics
•
Code:
is used to represent a command that is run from terminal
PREPARING LINUX ENVIRONMENT FOR BUILDING
• Now the you have finished setting up, a special environment is required for building.
• Preparing the environment is as easy as double clicking .exe in Windows or .dmg in MacOS
thanks to developer Akhil N.
• We need to clone his scripts (installer) from his GitHub
NOTE:
A script is a file which contains multiple commands that run sequentially when executed
Code:
git clone https://github.com/akhilnarang/scripts
• This should copy the scripts to directory /home/username/scripts
• Cd into the directory called setup
Code:
cd scripts/setup
• List out directory
Code:
ls
• Find the file that corresponds to our Linux build. Since we are using Ubuntu it will be android_build_env.sh
For other Distros refer to the readme that has also been cloned
• Run the script
Code:
. android_build_env.sh
• Setup GitHub using on screen instructions
• Congratulations you set up your computer for building
• Go back the previous dir that you were originally on (/home/username)
Code:
cd
NOTE:
cd will always take you to home/username
GETTING THE SOURCE
• This is probably one of the worst steps, you have to wait a while
• GCloud users will be able to download source in 15 minutes
• Other users may have to wait longer (depends on internet connection speed)
• Make a directory for your ROM
Code:
mkdir “ROMNAME”
NOTE:
this will make folder in directory home/username/romname
• Cd in and initiate repository, this basically tells your computer where to download source files from.
The repository initiation command can be found on the GitHub page under “manifest” then scroll down to
repo initialisation and copy command
• It should look like
Code:
repo init -u git://github.com/crdroidandroid/android.git -b 10.0
HINTS
NOTE:
1) Linux users can paste into terminal using Ctrl + Shift + V
2) Linux users can copy from terminal using Ctrl + Shift + C
3) GCloud users can paste into window using Ctrl + V
4) GCloud users can copy from window simply by highlighting
5) GCloud users using ssh from terminal can just follow terminal commands
• Once repo is initialised, you can begin download using
Code:
repo sync -f --force-sync --no-clone-bundle --no-tags -j$(nproc --all)
• Let everything download
GETTING DEVICE SPECIFIC FILES
• As most of you know the kernel acts as the translator between the OS and your actual hardware
• The files mentioned above are android version specific and will only work with that android
version
• The developer for your device aka dt maintainer will have these files on their GitHub and its
usually linked at the end of the op of other rom threads in the source code section
• You have to make sure that the rom version you downloaded matches up
• If the device tree is for an older version then wait until your dev. releases the latest trees, if no
developer is working on your device then it is possible to modify the tree to work with newer
version of android but it may take some effort.
• In case your tree doesnt match with the rom version that you have downloaded, the easiest and best option is
to scrap everything and download the source version that your tree is designed for
• To scrap everything, use
Code:
rm -rf “folder containing rom"
• To modify the init command to download an older version you need to pick out the branch you
need (the branch is basically the version the newer version is added to a new branch)
• Change the init command after -b to include desired branch. For example
repo init -b ten to repo init -b seven
• To get the device specific files, we need to fork them to your GitHub.
Find the stuff (kernel vendor device tree hardware) and fork them
NOTE:
Forking basically copies them to your GitHub
• At this point we need to know if we need to modify the device tree as some ROMs don’t require
you to modify it (CrDroid)(LOS)
• Some roms require only partial modifications, this is rom specific so I wont be going too much into detail
• If modification is required follow these steps , otherwise skip to the end of this section
• After forking we need to modify the files we will do this from the browser for ease of
understanding
•There are three files that need modification and they are located your device tree
• Some tree developers may split your device tree into two parts if there is more than one phone
running the same SOC, so keep an eye out for that. (devices that have the same soc are like the op3/op3t and the op7/op7p)
• The files that we need to modify are under your "device codename" device tree, not "device SOC-common" device tree.
• For example; we need to go to "device_samsung_crownlte" tree not "device_samsung_universal9810-common"
• In here the three files that need modification are
1) Android Products.mk
2) lineage.dependencies
3) lineage_"device codename".mk (example:lineage_crownlte.mk)
• First open AndriodProducts.mk Here replace wherever you see lineage with name of ROM in lowercase only.
• Second, open lineage dependencies.mk and rename file to "romname".dependencies (ecample: aim.dependencies)
• Third, open lineage_"codename".mk and rename to "romname"_"codename".mk and replace
lineage with "romname in the code. (Remember,use lowercase)
NOTE:
If you are building an older version of android make sure you branch out the right branch for your trees
People who do not need to modify can join us here
• Now that all your files are in your GitHub, we need to download them
• There are two easy ways
1) Fast and easy Room Service
2) Slow and boring manual cloning
• Room Service
1) cd into .repo from romsource
Code:
cd .repo
2) Make directory local_manifests
Code:
mkdir local_manifests
3) Make room service file
Code:
nano roomservice.xml
(follow next bullet point on how to make roomservice.xml)
4) Return to ROM folder
Code:
cd && cd "romfolder"
• Making the roomservice.xml is as easy as copy paste.
Visit
https://github.com/vrnsoma/local_manifests/blob/lineage-17.1/roomservice.xml
and copy and paste it into a text editor and edit it then paste it into the terminal window (step 3 in above point)
Hint for Device Tree
Example: link= userabc/repositories/device_samsung/crownlte (location on github)
path= device/samsung/crownlte (Where it should download to)
remote= github (where files are stored)
revision= branchname (which version you want)
• Resync Repo like I mentioned before
Code:
repo sync -f --force-sync --no-clone-bundle --no-tags -j$(nproc --all)
BUILDING
• Run
Code:
. build/envsetup.sh
• Then
Code:
brunch codename
• Make sure to clean build by running this in between builds
Code:
make clobber && make clean
• If you are using a slow system and want to improve build speeds, use the following command
for making partially clean builds for incremental updates
Code:
make installclean
• Building without cleaning is called dirty building and is never advised and do not do this unless
you know what you are doing
KEEPING SETUP UP TO DATE
• Repo sync will keep your rom and device specific files that have been deined in roomservice up to date
CREDITS
NathanChance
All threads on XDA
All guides on Github
All devs found on Telegram
If you want specific credits plz do notify me!
XDA:DevDB Information
BUILDING ANDROID, ROM for all devices (see above for details)
Contributors
vsoma
ROM OS Version: Android 10
ROM Firmware Required: NOOB
Version Information
Status: Stable
Created 2020-10-03
Last Updated 2020-10-03
I need rom porting guide for android 10....can you make thread on it?
I tried the tutorial, after the step repo sync -f --force-sync --no-clone-bundle --no-tags -j$(nproc --all). I get message error: RPC failed; curl 56 GnuTLS recv error (-24): Decryption has failed.
i can't finish compiling because java.lang.outofmemoryerror : heap size but i have already set the heap size to 8gb

Categories

Resources