Related
Anyone ever use one of these?
http://cgi.ebay.com/NEW-EMERGENCY-A...ryZ48492QQssPageNameZWDVWQQrdZ1QQcmdZViewItem
Please comment on:
1) how fast they charge
2) how much they charge the phone
thanks!
The kaiser battery is rated for 3.7 volts and the battery that device uses is 1.5 volts. It would charge at the same rate, but drain the AA very quickly. The cost of the batteries it would take to power that thing would quickly outweigh the benefits it would produce. If it had 2 AA wired to it then it might be remotely useful. I mean if you absolutely cant survive if your phone dies, then yes it would give you enough battery life to keep your phone going for a few hours.
Yeah...well I bought two cheapo spare 1600mah batteries of ebay with the thought of carrying one around with me to swap out if needed....but I was considering getting one of the 2-piece rubberized cases for my phone. In that case, the battery compartment I believe will be inaccessible and I don't want to snap off the back case constanstly and wear down the integrity. Therefore I thought something like this might be a good option.
Even with free access to the battery door, I would think opening it up on a regular basis to swap batteries isn't good for it (would get loose, etc...).
Motorola P790
Well, I used Motorola P790 and it is pretty good, rechargeable. I can recharge it together with my phone with one charger. It gives abt 30% recovery of your battery in abt 2 hr.
rovanesyan said:
The kaiser battery is rated for 3.7 volts and the battery that device uses is 1.5 volts. It would charge at the same rate, but drain the AA very quickly. The cost of the batteries it would take to power that thing would quickly outweigh the benefits it would produce. If it had 2 AA wired to it then it might be remotely useful. I mean if you absolutely cant survive if your phone dies, then yes it would give you enough battery life to keep your phone going for a few hours.
Click to expand...
Click to collapse
Not really, these units have a small switching power supply which boosts the voltage to be able to charge the phone (if you look at the picture you can see the copper inductor coil for the oscillator circuit inside the top clear piece), a Kaiser won't charge with an input voltage under 5 volts.
I don't know how long it takes to charge, but I doubt that you can get more than 1 good charge from a fresh battery.
I've had all sorts of charging problems recently. With the Wifi, GPS & Phone on it would use about 500ma of power. But if I was running SatNav it would actually use about 850ma.
What I've done is twofold. I've bought a 2700ma internal battery for the phone and I've got a 12-24v charger that puts out 2a (2000ma) and so far it has kept the device fully charged, even with Bluetooth running!
I'm not sure how to gauge the 2700ma battery as I've only been running it a day. I think it needs a bit more of testing before I use it full time without the spare, but it's also good to have the spare....
Hello,
i ve been searching for a way to extend the autonomy on the a501.
do you think i can use a cheap 12V lithium battery to charge it or take over when the internal battery is depleted ?
i m not very knowledgeable in electronics, i wouldnt want to damage the internal battery.
there seem to be very few commercial products that would fit this tablet and i m not really interested. i dont have 50$ for a +2h battery life --;
i was thinking of buying a 12V 5000mAh something battery from china and solder the appropriate DC connector on it, but im wondering if there are issues like, the Current needs to be stable at 1,5A or i might reduce the internal battery durability, things like that.
can anyone answer that ?
It's more complicated than that. The power supply probably has a circuit to regulate the flow of energy to the tablet, perhaps the tablet itself also has a circuit that works together, I don't know.
Short answer: buy a second power adapter
There are backup battery/chargers. Scosche goBAT for example.
Just Google around to find the best fit for you.
GullyFoyle said:
There are backup battery/chargers. Scosche goBAT for example.
Just Google around to find the best fit for you.
Click to expand...
Click to collapse
How would that work? Does the goBAT include a charging tip compatible with the A500?
Hello,
thanks for dropping by
its not helping really this is bs
power cat you say "probably" regulates the current. yes that is what i wrote that is what i hoped someone would clear up for me. i dont see how buying another wall charger is going to help me extend the tablet autonomy i would just as well carry the original one around.
gullyfoyle same sideways reading of the OP i would not pay 80$ for a marketed battery/charger.
i hope there are still people out there who can give an educated answer :/
this guy for example http://www.youtube.com/watch?v=LqxhEkDGkbg he says he learned it the hard way (bricked his phone?) because he put 4x(1.5V?) batteries to charge his iphone without the resistors (to get the voltage from 6V down to 5V?)
so there again, can there be issues with the discharge current rate or is it something about lithium batteries behaving differently from alkaline ones ?
i think i ll go ahead and try anyway. worst case scenario the battery will just sit there not putting out anything.
Why wouldn't you pay $80 for a backup battery charger. It was just an example. I'm sure you can find one cheaper after Black Friday, or even with a bit of Googlefu.
We aren't talking about normal chargers but portable charge devices.
http://www.scosche.com/consumer-tech/product/2073
For anyone in need of extra power, the goBAT II provides an innovative solution to the dreaded ‘low battery’ warning. The goBAT II is a powerful backup battery and dual port charger for your mobile devices. The internal 5000mAh ion battery will keep your devices going long after they normally would.
Advantages and Applications
A drained iPhone 4 can be charged 2.6 times with a fully charged goBAT II. An iPad can be charged up to 55% of full charge. This is the ideal battery for long commutes, airport travel and camping.
The goBAT II provides 2 USB charging ports that can be used at the same time. A 2.1 Amp port gives you the ability to charge mobile devices including tablets (iPad and Samsung Galaxy Tab). An additional 1.0 Amp port lets you charge your additional devices (iPhone, iPod, etc.).
Click to expand...
Click to collapse
Remember this is JUST AN EXAMPLE. The idea is to show these devices exist and are available for purchase.
http://www.engadget.com/2011/02/23/scosches-gobat-ii-portable-battery-pack-handles-two-usb-devices/
We'll just keep it real simple for you: the object you're looking at above is the Revive II charger, but slimmer, and with a rechargeable battery pack thrown in rather than a wall / cigarette adapter. Got it? Good. The goBAT II contains a 5000mAh rechargeable lithium ion battery, and it offers a pair of USB ports for charging. One's a 10-watt (2.1 Amp) port capable of handling high-maintenance devices like Apple's iPad, while the other is a more conventional 5-watt (1 Amp) socket. Scosche is also throwing in a USB adapter for the Galaxy Tab, theoretically letting those with divided households charge both an iOS and Android tablet at the same time. Brain melting, we know. It also works with the company's Revive charging app, which indicates how long a device will take to charge on any of Scosche's chargers and can also be configured to send an email notification once a device has been fully charged. She's all yours down at the source link for $89.99
Click to expand...
Click to collapse
See, others deem it "BRAIN MELTING".
And the cost of that type of thrill is reasonable, for the job it does.
But I can understand how someone would encourage another person to experiment with the guts of electronics they don't fully understand. Screw it up and you can always buy a new one.
Then again, you could buy three or four Gobats and save all the fuss and bother.
mr.bryce said:
Hello,
thanks for dropping by
its not helping really this is bs
power cat you say "probably" regulates the current. yes that is what i wrote that is what i hoped someone would clear up for me. i dont see how buying another wall charger is going to help me extend the tablet autonomy i would just as well carry the original one around.
gullyfoyle same sideways reading of the OP i would not pay 80$ for a marketed battery/charger.
i hope there are still people out there who can give an educated answer :/
this guy for example http://www.youtube.com/watch?v=LqxhEkDGkbg he says he learned it the hard way (bricked his phone?) because he put 4x(1.5V?) batteries to charge his iphone without the resistors (to get the voltage from 6V down to 5V?)
so there again, can there be issues with the discharge current rate or is it something about lithium batteries behaving differently from alkaline ones ?
i think i ll go ahead and try anyway. worst case scenario the battery will just sit there not putting out anything.
Click to expand...
Click to collapse
You will break your tablet.
The charger contains a complex integrated circuit. Sticking on a few resistors isn't gonna do ****.
Look at this for example, a simple wind generator has a complex charging circuit to regulare all the power:
http://www.instructables.com/id/How...nd-turbine/step8/Build-the-charge-controller/
Just google "how to make a charge controller" it's really not as simple as you think.
Quote from the site:
The general principal behind the controller is that it monitors the voltage of the battery(s) in your system and either sends power from the turbine into the batteries to recharge them, or dumps the power from the turbine into a secondary load if the batteries are fully charged (to prevent over-charging and destroying the batteries).
ok thanks ^^
now i understand that part
Short answer: buy a second power adapter
Click to expand...
Click to collapse
you are saying the overcharge controller (and other safety features) are all in the wall charger and are not integrated in the tablet.
so if i really really wanted to try i could plug any battery between 12 and 24V to this little guy couldnt i ?
http://www.ebay.ca/itm/220826123824#ht_3149wt_1163
As far as I know...as long as the voltage is correct (eg 12 volts) and the power adapter can produce the required amperage (1.5A) then the tablet will only take the current it can use.
So even if the power adapter is capable of producing 10A say, it doesn't mean it's forcing the 10A onto whatever is connected to it. If you use 1.5A (and if there was a way to connect multiple devices to it) you would still have 8.5A of current you could still take.
Oh the charge regulator would not be in the power adapter, that would be a very stupid design. It would be in the tablet it self to regulate how much charge it requires. I don't know of any power adapter that takes feedback from what it's charging to regulate the current.
It's the same with laptops, that's why you can buy universal laptop chargers when the one you have breaks, you just need to make sure it can supply enough amperage to power your device.
The power adapter is just a simple device that converts 110-240v 50/60hz voltage to 12v and upto whatever amperage it is designed for.
Power plugs in the house are designed at 110-240v to a maximum of 2400W (so ~20a for 110v and 10a for 240v) do you think whatever you plug into it uses up 2400W of electricity at once? No, it just takes what it is required (amperage), that's why you can plug a power strip with like 2-10 additional plugs without any problems unless if try to take more than 2400W in total.
Basic high school physics should of taught people this.
first sensible answer i get thank you daemos i m just not gonna take any chances considering the lithium technology and the fact they could use a "stupid design" for shorter gadget lifespan. if anyone has ever modded a car charger i d love to read about it.
mr.bryce said:
first sensible answer i get thank you daemos i m just not gonna take any chances considering the lithium technology and the fact they could use a "stupid design" for shorter gadget lifespan. if anyone has ever modded a car charger i d love to read about it.
Click to expand...
Click to collapse
Lithium ion batteries must be charged at a very specific voltage. So all charging regulation mechanisms would need to be inside the tablet.
I'm pretty sure the ones inside the tablet are definately below 12V so anyone thinking that the AC adapter has any fancy mechanisms to detect feedback, and regulate charge and control the voltage given to the Li-ion cells is incorrect.
Is it safe to use one of THESE to charge or run the tablet?
They also have a 6800mAh ver.
WOW YOU MEN Complicate everything
SIMPLE EASY .. Look at the output voltage of the the power brick for the iconia.. the part that you plug into the wall..
got something that OUTPUTS 12V AT 1.5 AMPS and you are done.. the Li Batteries as in all LI BATTERIES HAVE THERE OWN charging regulators in them.
The reason for this is because if a Battery is drained to a low state it will GET HOT AND OVERHEAT.. NI-CD Batteries can take and handle this heat.. Li batteries become a mini bomb at these temps.. So the are self regulating.. This can be proven by getting a cordless drill hold the shaft from running.. the drill will heat up the battery the device will STOP FUNCTIONING.. Remove the battery and put it back in . it will work again..
Now with that said.. most Li devices say make sure you have 20% or more battery life before flashing and so on.. This is because the DEVICE WILL NOT RUN On the power port. the port only connects to the battery. and in some cases the display lighting.. My cell is this way. if i run the battery until its dead or using gps on it. it will drain the battery faster then it can charge . causing it to not work until you charge it for 5 minutes or so.. this would assume that using a external battery to charge it .. the external batteries themselves would need to be more then 12 volts and atleast double the amps.. then regulated to the 12v 1.5 amps . think of this like pooring water thru a funnel.. to maintain the 12v 1.5 amps. You can test my theory by taking the battery out of your cell phone and trying to run it just on the power adaptor only.. I KNOW MINE WILL NOT RUN.. however if it has older battery technology it will..
I just installed a QI charger for my new LG G2. I got a few QI charging pads as well. I want to see how fast it is charging, or the charge rate (500mah, 750? ect) as the receiver is supposed to do the following charge: DC 5V/500mA-1000mA .
Ive tried a few apps, but I cant find one that specifically says what the charging rate is. Anyone know the best way to figure that out?
Two questions:
1) When you say you "installed a QI charger for my new LG G2" exactly what do you mean there, and I do mean exactly: are you referring to getting a Qi charging pad (which you mention) or do you mean you got some kind of part that you physically installed in or on your G2 - the Verizon G2 is the only one that supports wireless charging out-of-the-box so, that's why I'm asking.
2) With respect to actual charging, the output of the Qi wireless charging pad is directly related to the amperage/current supplied by the actual AC adapter or USB charger you're using with it. If it's about 1A (the AC or USB charger) then you're going to lose quite a bit of power in the actual charging process because wireless charging is pretty severely inefficient most of the time, give or take you'd get 400 to 500mAh going into the actual device from the charging pad.
What I'm saying is if you have a Qi wireless charging pad, you'd be best served using as high an amperage/current charger for the pad itself so that the pad can then transfer as much as possible to the device itself. Anything less than a solid 2A charger attached to the Qi wireless charging pad and you're basically wasting a lot of it in the process and might be better off actually just using the USB port on a computer or something (about 500-550mAh max anyway).
Basic rule of thumb: the Qi wireless charging pad can use all the amperage/current it can get, with at least the factory LG 1.8A charger being what I'd call the bare minimum (and with that you'd probably be able to push about 900 to 1000 mAh (aka 1A) to the device. Qi hardware is roughly 40% efficient so, you're going to lose a lot in the process as stated; the more you start with the more that gets to the device even accounting for the inefficiency.
As far as measuring the current, you can try CurrentWidget on the Play Market, it may provide you with some info in terms of the charging rate.
br0adband said:
Two questions:
1) When you say you "installed a QI charger for my new LG G2" exactly what do you mean there, and I do mean exactly: are you referring to getting a Qi charging pad (which you mention) or do you mean you got some kind of part that you physically installed in or on your G2 - the Verizon G2 is the only one that supports wireless charging out-of-the-box so, that's why I'm asking.
2) With respect to actual charging, the output of the Qi wireless charging pad is directly related to the amperage/current supplied by the actual AC adapter or USB charger you're using with it. If it's about 1A (the AC or USB charger) then you're going to lose quite a bit of power in the actual charging process because wireless charging is pretty severely inefficient most of the time, give or take you'd get 400 to 500mAh going into the actual device from the charging pad.
What I'm saying is if you have a Qi wireless charging pad, you'd be best served using as high an amperage/current charger for the pad itself so that the pad can then transfer as much as possible to the device itself. Anything less than a solid 2A charger attached to the Qi wireless charging pad and you're basically wasting a lot of it in the process and might be better off actually just using the USB port on a computer or something (about 500-550mAh max anyway).
Basic rule of thumb: the Qi wireless charging pad can use all the amperage/current it can get, with at least the factory LG 1.8A charger being what I'd call the bare minimum (and with that you'd probably be able to push about 900 to 1000 mAh (aka 1A) to the device. Qi hardware is roughly 40% efficient so, you're going to lose a lot in the process as stated; the more you start with the more that gets to the device even accounting for the inefficiency.
As far as measuring the current, you can try CurrentWidget on the Play Market, it may provide you with some info in terms of the charging rate.
Click to expand...
Click to collapse
Firstly, thank you for taking time to write such a great response. I really appreciate it!
1) Yes I installed a universal sticker. I used this one http://www.amazon.com/gp/product/B00MN3RR7Q/ which is supposedly supposed to do 1000mA. People in the reviews seem to say they are getting good results. I wish the ATT version had wireless out of the box, but then if it did I would be stuck with PMA charging. I installed an actual NFC/PMA sticker in my G3. PMA kind of sucks...anywho.
2) This is the pad I am using: http://www.amazon.com/gp/product/B00H9B7ALK/. 1.5a input and 1a output. On this one, I am averaging about 3% per 10 minutes or 30% an hour. So roughly 3 hours and 20 minutes to full charge. I can try the the stock LG. Oh, my Dell Venue 8 Pro is a 2a one. I can try that as well. Can the paid take the 2a in even though it was built for 1.5a in?
I will try current widget. Ive been using battery monitor to log as well.
1) Neat, I didn't even know such a thing existed, I may have to give that a shot with my G2 at some point (if I decide to keep it, that is).
2) As stated before, using a higher amperage/current charger or power supply is preferred, sure. It should help get the charging done faster and again the device (meaning the charger) will pull what it requires and nothing more.
Basic electronics 101 here: two things that matter with respect to smartphone chargers (or most any device, to be honest) - amperage aka current and voltage.
Voltage is pushed from a power supply meaning it will always be the same amount, give or take micro-variations. If it's a 5VDC power supply (of any kind) it's designed to provide 5VDC constantly. If it's some other value, say 9VDC, 12VDC, and so on, that's how much it pushes - if you were to connect a 9VDC charger to a smartphone or other device that's designed for a 5VDC input, you'd fry the electrical circuits in the device because it would be flooded with more power than it's designed for.
Amperage aka current is pulled from a power supply and only what is required is what's actually taken. With respect to smartphones, most of the higher end devices these days can make use of roughly 1.2 to 1.8 A (read as Amps) when it comes to charging. This means if you had a charger that output 5VDC (from what I just said above that's the standard worldwide for such devices as smartphones) but could theoretically provide 5A of current, the smartphone technically would not be damaged because it would only pull roughly 1 to 1.8 Amps at most - if you do use CurrentWidget and you plug in the G2 and look at the reading while it's charging, you'll note that the level of amperage/current being pulled from the charger fluctuates like crazy - voltage stays constant (give or take a microvolt here and there) but the current will jump all over the place, especially if you enable the "Smart Charging" feature of the G2.
The reason this happens is because when a LiIon battery is pretty low on a charge, say down to 10-15%, it's "gone deep" as the saying goes and the charging circuit will pull the max amperage/current that the charger is capable of producing and that can be measured/seen using CurrentWidget. As the battery gets into the 90% full range, the amperage/current draw will reduce (again, especially with the Smart Charging enabled) as the battery gets towards being totally full. This is a good thing in most every respect and it keeps the LiIon battery in good shape too - if it pulled the max current till it was 100% it wouldn't necessarily be so good and would heat the battery up more than necessary and LiIon batteries are very sensitive to temperature variations.
Hence, phones get fried by "cheap Chinese chargers" a lot of times because of voltage issues and faulty voltage regulators, not from amperage/current problems. It's actually kind of difficult to kill a device with amperage/current, but screwing around with the voltage will destroy a device almost 100% of the time and quite fast too.
Also, this is the reason why you'll see a phone charge relatively quickly to the 99% point then it seems to take even longer to get that last 1% to finish it off at 100% - it's the way LiIon charging technology works and helps the battery lifespan (meaning how long the battery is useful for measured in years and not "battery life" in terms of how long it can run before you have to charge it again measured in hours). The charging process "slows down" as it gets close to being full which works great for this kind of technology.
Hope this info helps...
br0adband said:
Basic rule of thumb: the Qi wireless charging pad can use all the amperage/current it can get, with at least the factory LG 1.8A charger being what I'd call the bare minimum (and with that you'd probably be able to push about 900 to 1000 mAh (aka 1A) to the device. Qi hardware is roughly 40% efficient so, you're going to lose a lot in the process as stated; the more you start with the more that gets to the device even accounting for the inefficiency.
Click to expand...
Click to collapse
Okay let me see if I understand this correctly. The OUTPUT of the qi charging pad could be 1000mAh, but since the wireless QI hardware is only 40% efficient, the actual charge rate will be more around mAh to 500mAh? Im recording an actual charge rate of 500mAh and my phone states it is on AC power and not USB.
If the receiver on the phone states it can do up to 1000mAh, what I need to find is a charger that outputs a lot more like 2000mAh and at 40% efficiency I might be able to get around the 1000mAh?
That pretty much sums it up, yep - as long as you account for the inefficiency of the Qi charging technology, you can get faster charge times and still use it without having to plug in/unplug, etc the old fashioned way.
It works, it's just not nearly as fast or efficient as the old fashioned way so, give the Qi pad plenty of current and you'll be fine - since it will pull what it needs, using a 1.8A or 2A or even more won't hurt it, but it will make it pretty damned warm to the touch when it's charging so keep that in mind. As the G2 would be sitting on top of the Qi pad, if the pad gets warm or even hot then obviously the G2 will as well by heat transfer and heat/high temps are bad for LiIon batteries as I mentioned earlier.
It's a trade-off more than anything else but again, it does work as long as you're understanding the hows and whys to make the best of it.
br0adband said:
That pretty much sums it up, yep - as long as you account for the inefficiency of the Qi charging technology, you can get faster charge times and still use it without having to plug in/unplug, etc the old fashioned way.
It works, it's just not nearly as fast or efficient as the old fashioned way so, give the Qi pad plenty of current and you'll be fine - since it will pull what it needs, using a 1.8A or 2A or even more won't hurt it, but it will make it pretty damned warm to the touch when it's charging so keep that in mind. As the G2 would be sitting on top of the Qi pad, if the pad gets warm or even hot then obviously the G2 will as well by heat transfer and heat/high temps are bad for LiIon batteries as I mentioned earlier.
It's a trade-off more than anything else but again, it does work as long as you're understanding the hows and whys to make the best of it.
Click to expand...
Click to collapse
I ran the battery down to 70% and I have it on the charger with a 2a wall adapter. I will see how fast it charges. But it seems like I will get roughly 1/3rd the charging speed of a wall adapter. Which means in the car using gps with the screen on and QI chrarging will probably mean a negative overall power situation.
Im also going to try a high speed, charging only cable like this http://www.amazon.com/gp/product/B009W34X5O/ between the wall adapter and the charging pad to see if there is any difference.
Don't waste your money, that thing is no better than a "Gold Plated 56K Modem Cord," seriously. Gold plating, "high speed," all that stuff is marketing BS and means absolutely nothing in the long run - it's a microUSB cable, nothing more.
In 20+ years of using USB cords of all kinds I've yet to see one that's corroded so, that gold plating is not gonna matter anyway.
Any microUSB cable you can find today is more than capable of handling ~2A without a single issue and it's well known that the G2 can max out at 1.6A draw for charging anyway so any cable is more than adequate for doing it.
br0adband said:
Don't waste your money, that thing is no better than a "Gold Plated 56K Modem Cord," seriously. Gold plating, "high speed," all that stuff is marketing BS and means absolutely nothing in the long run - it's a microUSB cable, nothing more.
In 20+ years of using USB cords of all kinds I've yet to see one that's corroded so, that gold plating is not gonna matter anyway.
Any microUSB cable you can find today is more than capable of handling ~2A without a single issue and it's well known that the G2 can max out at 1.6A draw for charging anyway so any cable is more than adequate for doing it.
Click to expand...
Click to collapse
Hah! I already have one I use in the car
shaxs said:
I ran the battery down to 70% and I have it on the charger with a 2a wall adapter. I will see how fast it charges. But it seems like I will get roughly 1/3rd the charging speed of a wall adapter. Which means in the car using gps with the screen on and QI chrarging will probably mean a negative overall power situation.
Im also going to try a high speed, charging only cable like this http://www.amazon.com/gp/product/B009W34X5O/ between the wall adapter and the charging pad to see if there is any difference.
Click to expand...
Click to collapse
Okay I was able to maintain neutral power with the screen on and running gps. Let it go for almost 2 hours and it was at the same percentage as when I started. Im good with that for car use.
Method:
First I used my phone until the battery was below 15% in order to get a better picture of what the charging would look like over almost a full battery cycle. I did not start at the same battery percentage for each test because I did not find any benefit to doing so. I original did this for uniformity, but it did not make a difference after trying it using the more accurate equipment.
I then cleared my history in the Battery Monitor Pro Widget (BMW Pro) recording app which was used to log the battery [mV], battery temperature [F], time, and battery percentage changes. Once this was done I plugged in my USB Power Monitor, turned airplane mode on, removed the case, and let the phone charge. I started logging the data via my power monitor once the phone showed it was charging. From this point onward I let the phone charge without interrupting it until it reached 100%, then I let it charge for another 10-60 minutes to see if it was still drawing power from each charger. Once all of this was done, I exported my data collected from BMW Pro, emailed it to myself, and pasted it along with the USB Power Monitor data into an Excel spreadsheet. All of the data was then delimited to separate the clusters of data due to the way they were recorded, and subsequently graphed. The USB Power Monitor recorded data points every 0.36 seconds, while the BMW Pro took recordings every 5 seconds because I was having issues with the “real-time” recording option in the app working correctly.
All of the data was then graphed into the nice figures you will see below; each color reflects the same variable across all of the graphs to make reading them easier. I included a legend at the top of each set of graphs which should also help make it easier to read the data.
The most interesting part of this test is how cool the S7 Edge stays while charging, and the very marginal difference in overall charging time between QC 2.0/1.0. A 15-minute gap is marginal at best given the ‘big improvements’ Qualcomm claimed when launching the newer standards.
When conducting the wireless charging tests I think there is some error in the Samsung Fast Wireless charging data, so I plan on redoing it at some point. I already redid the Choetech one because it has a similar strangely long, but now it seems more in line with what I initially found before using the newer testing equipment.
I wanted to also quickly point out that both my HTC 10 and S7 Edge keep pulling current even after the phones show they are 100% charged. I’m not talking about a tiny amount; they both pulled ~1-5W+ after hitting 100% battery which is A LOT considering they are reporting to be fully charged. I verified this using 3 multimeters just to be sure. It appears as if Qualcomm, or the OEM’s are falsely reporting when the phone is actually charged, or there’s some other shady things going on here.
Another thing I wanted to mention is how the S7 Edge is so consistent in the way it charges the battery. It could be due to the lower rates Samsung uses (9V/1.67A max which is 15.03W) vs the HTC 10’s up to 18W that I’ve seen it pull. Just take a look at how the S7 Edge charges using QC 2.0 compared to the HTC 10 with lower temperatures, similar times, and a much more consistent overall charging curve.
If you look at the Tronsmart & Choetech QC2.0 tests, then you might notice the large difference between the two. The Tronsmart charger has a harder time holding onto the proper voltages, therefore it bounces around more from ~8.92V-9.03V (a 0.11V change) while the Choetech one ranges from 9.077V-9.092 which is a significantly smaller 0.015V range. The power control chip is responsible for controlling these voltages, and clearly the Choetech one has a better chip in it. This is especially important for external battery packs where efficiency really matters due to the limited amount of power they can store.
Equipment:
These tests were conducted using a series of different chargers. The same brand was used for both Quick Charge 2.0/3.0 tests to minimize experimental error; This trend remained the same was also done for the wireless charging tests
Wall Chargers:
Quick Charge 2.0: Tronsmart 18W charger 5V/2A, 9V/2A, 12V/1.5A
Quick Charge 3.0: Tronsmart 18W charger 3.6-6.5V/3A, 6.5-9V/2A, 9-12V/1.5A
USB inline Power Monitor:
XYZ Studio 0-24V, 0-3A USB Power Monitor
Tronsmart 5-12V USB multimeter (not used in this test, but was used in the older version)
Software/App(s):
Battery Monitor Widget Pro
Excel
Notepad++
Realterm (for the USB power monitor logging)
Legend
QC 2.0 Tronsmart S7
QC 2.0 Choetech
QC 1.0 Samsung
Choetech Fast Wireless Charger
Samsung Fast Wireless Charger
Samsung Wireless Charger
Normalized data Table
Full sized downloadable pictures of everything (data wise) you see above.
very good stuff!
maybe you could also record the heat at the hottest spot of the phone during charging? I think qc3 has the same charge rate but its able to change voltage to reduce creating waste heat compared to qc2.0.
my main concern with the s7 is the battery life, i know it won't last me a full 18hr day so i really need a portable fast qc2 charger that is pocketable, so maybe 5000mah, but have not seen such a small qc charger tho
Excellent post and well-made graphs. Thanks for your efforts.
well done. good info here.
sonhy said:
very good stuff!
maybe you could also record the heat at the hottest spot of the phone during charging? I think qc3 has the same charge rate but its able to change voltage to reduce creating waste heat compared to qc2.0.
my main concern with the s7 is the battery life, i know it won't last me a full 18hr day so i really need a portable fast qc2 charger that is pocketable, so maybe 5000mah, but have not seen such a small qc charger tho
Click to expand...
Click to collapse
I don't have a thermal camera, or way to do that otherwise I gladly would. I can recommend a small 6000mah external battery pack if you want; Ill do a quick write up too (if you need one). The Samsung charger stayed at 9V the whole time per my multimeter's reading it just dropped go .5A near the end.
CLARiiON said:
Excellent post and well-made graphs. Thanks for your efforts.
Click to expand...
Click to collapse
ISperfection said:
well done. good info here.
Click to expand...
Click to collapse
Thank you, I will add in a standard wireless charger test (since my free Samsung one is enroute), and I can also get their fast charger too. I believe Samsung's fast wireless charger is only 7W so it would be slower than the Choetech one but it never hurts to see how fast it is.
Sent from my Nexus 6P using XDA Labs
@Pilz yes pls let me know of a qc2.0 small portable charger I think a quick 30mins charge to add 50% battery life mid day will be the best ease-of-use solution for me.
with the heat measurement, I'll be happy with your commercial grade temperature sensor that the great designer created for you, your fingers or better yet, the inside of your wrist.
preferably touching the same area on the phone every time and grading something like 1-5 hot/comfort levels maybe? just suggesting, no pressure
sonhy said:
@Pilz yes pls let me know of a qc2.0 small portable charger I think a quick 30mins charge to add 50% battery life mid day will be the best ease-of-use solution for me.
with the heat measurement, I'll be happy with your commercial grade temperature sensor that the great designer created for you, your fingers or better yet, the inside of your wrist.
preferably touching the same area on the phone every time and grading something like 1-5 hot/comfort levels maybe? just suggesting, no pressure
Click to expand...
Click to collapse
I'll look into some methods to measure the heat easily while they're charging. I'm conducting the standard wireless charger test using my free Samsung wireless charger right now QC 2.0 chargers the fastest when you start at a very low battery percentage, so ideally you can achieve the results posted, but ambient temperature, starting % etc contribute to whether or not that's attainable. It's still a good estimate for 30 minutes of charging +/- 5% for other factors. The phone also chargers slower when the screen is in. The rate would go from 9V/1.67A to 9V/1.10A with the screen on. It was very consistent when I turned the screen on and off during the test.
Sent from my Nexus 6P using XDA Labs
i actually won't care about heat issues while charging this time round, it'll be like my moto defy, i just run it under cold water after a fast hot charge, wont be using the s7 for many years so not worried about moisture build up.
i have ordered a magnet micro usb cable that says its rated for 2.4A charging so hopefully it'll allow easy qc2.0 charging, no need to plug in, it magnetically snaps on and off.
i think the best charge setup would be a 30mins quick charge (magnet) on the office desk than a 60mins wireless qi charge, carried in your pocket type situation.
sonhy said:
i actually won't care about heat issues while charging this time round, it'll be like my moto defy, i just run it under cold water after a fast hot charge, wont be using the s7 for many years so not worried about moisture build up.
i have ordered a magnet micro usb cable that says its rated for 2.4A charging so hopefully it'll allow easy qc2.0 charging, no need to plug in, it magnetically snaps on and off.
i think the best charge setup would be a 30mins quick charge (magnet) on the office desk than a 60mins wireless qi charge, carried in your pocket type situation.
Click to expand...
Click to collapse
Did you by chance order the Znaps? I backed them ages ago for both the Type-C and micro USB connectors. If I'm lucky I might eventually maybe sometime before I die receive them. I don't expect much from a kickstarter campaign that's been delayed this much. I'm finishing up the standard Qi/PMA charging test. It shouldn't matter the standard it's using but if it's important the Samsung wireless charger is actually PMA.
Sent from my Nexus 6P using XDA Labs
OP Updated
-Standard wireless charging test added
-All figures updated to reflect the new test
no, its from aliexpress, $10 or so, ive seen cheaper so I would say the poor Kickstarters had their designs stolen and made cheaper... im not sure, i just buy what's available and easy. just search magnet usb cable, you'll find heaps, the more exy ones claim 2.4A current rating.
sonhy said:
no, its from aliexpress, $10 or so, ive seen cheaper so I would say the poor Kickstarters had their designs stolen and made cheaper... im not sure, i just buy what's available and easy. just search magnet usb cable, you'll find heaps, the more exy ones claim 2.4A current rating.
Click to expand...
Click to collapse
Let me know how it works, I rarely use cables to charge my phone becusse I hate micro USB ports plus I'm used to the type C on Nexus.
Sent from my Nexus 6P using XDA Labs
Have you tried charging with 18w charger(not wireless) rather than the samsung one?
peachpuff said:
Have you tried charging with 18w charger(not wireless) rather than the samsung one?
Click to expand...
Click to collapse
Yes it doesn't matter becuase the phone is only rated for 15.03W so it can't use more than that no matter the charging method. See screenshot below:
Sent from my Nexus 6P using XDA Labs
@Pilz yeah sure, it should arrive in a couple of weeks. i hate plugging in as well, even with the usb type c, its reversible but finding the port isn't always easy, they should have made the port surface like a cone or funnel so your guided into the port more easily.
the use of the magnet is awesome, Sony's external side charging pins have been around for ages, its really the charging current and quality of the copper that im worried about.
sonhy said:
@Pilz yeah sure, it should arrive in a couple of weeks. i hate plugging in as well, even with the usb type c, its reversible but finding the port isn't always easy, they should have made the port surface like a cone or funnel so your guided into the port more easily.
the use of the magnet is awesome, Sony's external side charging pins have been around for ages, its really the charging current and quality of the copper that im worried about.
Click to expand...
Click to collapse
I just wish they had Type-C because its so much better especially after using it for a while now.
Sent from my Nexus 6P using XDA Labs
I never knew that plugging in a micro USB cable was so difficult. It could be one of those things that once you try a better alternative (type c maybe?) makes you ask how you lived without it, but I don't see what the fuss is about just yet.
I've used wireless chargers for years (way back in the NExus 5 days even) including in the car. Any word on fast wireless charging and heat? I'm worried about it pumping a ton of heat on to the back of the phone especially for extended periods such as overnight.
xxaarraa said:
I never knew that plugging in a micro USB cable was so difficult. It could be one of those things that once you try a better alternative (type c maybe?) makes you ask how you lived without it, but I don't see what the fuss is about just yet.
I've used wireless chargers for years (way back in the NExus 5 days even) including in the car. Any word on fast wireless charging and heat? I'm worried about it pumping a ton of heat on to the back of the phone.
Click to expand...
Click to collapse
Micro USB is just more of a hassle becusse usually you need to angle it while inserting it into the phone. Type-C is nice becuase there no worrying about how I need to orient a cable when I'm half awake plugging my phone in. It's hard to understand why its nice until you use it everyday.
I haven't been able to measure the heat yet, but the phone is cooler using the 10W wireless fast charger than it is using QC 2.0. The phone isn't hot to the touch but it is warm using the fast wireless charger. I'll try to download a battery monitoring app that measures battery temp while it's charging. This method won't be as accurate as physically measuring it, but it should still give a good indication of the temperature.
Edit: I tested the temperature using GSAM battery montior via the fast wireless charger fro ~6% charge (28-34%) and the temperature rose 6 [F], the I let the phone cool and tested QC 2.0. The phone was charger for 6% to keep things cosnistent with a temperature change of 5[F]. I would need to find a way to more accurately measure these values because that quick test doesn't really mean anything at this point.
Sent from my Nexus 6P using XDA Labs
Does the Adaptive Fast charging by Samsung with with QC 2.0 compatible devices or is it only exclusive to Samsung?
ahrion said:
Does the Adaptive Fast charging by Samsung with with QC 2.0 compatible devices or is it only exclusive to Samsung?
Click to expand...
Click to collapse
It's just a QC 2.0 charger from what I can tell. I have a battery pack that will charge using QC 2.0 so I can test it using my multimeter
Sent from my Nexus 6P using XDA Labs
I have read from various sources about the Leeco 727 dying a premature death due to burn out of the charger port. Some theories attribute it to bad Leeco supplied charging adapter or cable or faulty motherboard.
I tried a bunch of different wall adapters and cables to see if I could make some sense of it. What I noticed is that only with the Leeco supplied unit and an Anker dual port unit do I get any semblance of fast charging. There is no indicator on screen. I can only go by time observation.
Charging with other fast charge adapters seem to charge at a slower pace at 5 volt. From what I can see using a USB port tester is that when something charges at fast charge, it charges at 9 volt. I used a Samsung adapter and one from an orbic wonder which are definitely fast charge capable. They charge my old Motorola G4 at "turbo power" and a Note 4 at "fast charge".
I bought a unit from Allmaybe that has visual lcd of power consumption and it clocked down to a lower voltage after tripping the overpower indicator.
Maybe we need to throw away the Leeco wall adapter. It's possible that either it or the phone is drawing too much electricity for the port to handle.
tekweezle said:
I have read from various sources about the Leeco 727 dying a premature death due to burn out of the charger port. Some theories attribute it to bad Leeco supplied charging adapter or cable or faulty motherboard.
I tried a bunch of different wall adapters and cables to see if I could make some sense of it. What I noticed is that only with the Leeco supplied unit and an Anker dual port unit do I get any semblance of fast charging. There is no indicator on screen. I can only go by time observation.
Charging with other fast charge adapters seem to charge at a slower pace at 5 volt. From what I can see using a USB port tester is that when something charges at fast charge, it charges at 9 volt. I used a Samsung adapter and one from an orbic wonder which are definitely fast charge capable. They charge my old Motorola G4 at "turbo power" and a Note 4 at "fast charge".
I bought a unit from Allmaybe that has visual lcd of power consumption and it clocked down to a lower voltage after tripping the overpower indicator.
Maybe we need to throw away the Leeco wall adapter. It's possible that either it or the phone is drawing too much electricity for the port to handle.
Click to expand...
Click to collapse
Their threads on this.
Sent from my LEX727 using xda premium
A device like yhis Xdragon USB voltmeter might be helpful in debugging issues with charging.
Right now I am connected to a Samsung adaptive fast charger that can pull 9 volts but currently just pulling in 4.78 volts and about 700 mAh. At that rate will take about 5 to 6 hours to fully charge the 4200 mAh battery in the Leeco
tekweezle said:
I have read from various sources about the Leeco 727 dying a premature death due to burn out of the charger port. Some theories attribute it to bad Leeco supplied charging adapter or cable or faulty motherboard.
I tried a bunch of different wall adapters and cables to see if I could make some sense of it. What I noticed is that only with the Leeco supplied unit and an Anker dual port unit do I get any semblance of fast charging. There is no indicator on screen. I can only go by time observation.
Charging with other fast charge adapters seem to charge at a slower pace at 5 volt. From what I can see using a USB port tester is that when something charges at fast charge, it charges at 9 volt. I used a Samsung adapter and one from an orbic wonder which are definitely fast charge capable. They charge my old Motorola G4 at "turbo power" and a Note 4 at "fast charge".
I bought a unit from Allmaybe that has visual lcd of power consumption and it clocked down to a lower voltage after tripping the overpower indicator.
Maybe we need to throw away the Leeco wall adapter. It's possible that either it or the phone is drawing too much electricity for the port to handle.
Click to expand...
Click to collapse
The charger is fine, it was built according to qualcomm specs: https://www.qualcomm.com/media/documents/files/quick-charge-device-list.pdf
The Issue is that alot of phones were sent out with bad cables.
I don't think that it's just the cable.
I have been seeing hard shut downs while charging at night. It's not consistent so I am just going slow I suspect that the phone is shutting off to prevent overcharging the battery.
I have 2 x727 with asop extended 8.1 and blackscreen kernel 4.9 installed
I replaced the original LeEco USB C cable with a genuine Samsung USB C cable per the recommendation of other threads. "no change still shut down while charging overnight"
I suspect that it is a kernel battery issue so I backed up in twrp and I installed the regular version 4.9 of the blackscreen kernel. "no change the phone is still shutdown occasionally while charging overnight on a original leeco charger with a Samsung USB C cable"
So now I am trying both a Samsung charger and Samsung cable. I should revert back to the twrp kernel backup but blackscreen kernel is just too awesome!
The Samsung charger only outputs at 5.3V @ 2.0A
The LeEco charger outputs at 3.6v to 8v @ 3.0A or 12v @ 2.0A
I'm pretty sure that the problem is a software issue with the quick charge 3.0 voltage controls in the rom itself but I haven't gotten a log of the shutdown yet to confirm that because I haven't rooted the phone. The phone was getting uncomfortably warm when charging.
I'm betting that with the Samsung Oem quick charge 2.0 charger the phone will work properly without shutting down overnight.
I'll update this post with my results.
dlradlt said:
I have been seeing hard shut downs while charging at night. It's not consistent so I am just going slow I suspect that the phone is shutting off to prevent overcharging the battery.
I have 2 x727 with asop extended 8.1 and blackscreen kernel 4.9 installed
I replaced the original LeEco USB C cable with a genuine Samsung USB C cable per the recommendation of other threads. "no change still shut down while charging overnight"
I suspect that it is a kernel battery issue so I backed up in twrp and I installed the regular version 4.9 of the blackscreen kernel. "no change the phone is still shutdown occasionally while charging overnight on a original leeco charger with a Samsung USB C cable"
So now I am trying both a Samsung charger and Samsung cable. I should revert back to the twrp kernel backup but blackscreen kernel is just too awesome!
The Samsung charger only outputs at 5.3V @ 2.0A
The LeEco charger outputs at 3.6v to 8v @ 3.0A or 12v @ 2.0A
I'm pretty sure that the problem is a software issue with the quick charge 3.0 voltage controls in the rom itself but I haven't gotten a log of the shutdown yet to confirm that because I haven't rooted the phone. The phone was getting uncomfortably warm when charging.
I'm betting that with the Samsung Oem quick charge 2.0 charger the phone will work properly without shutting down overnight.
I'll update this post with my results.
Click to expand...
Click to collapse
Have you tried simply reflashing the correct firmware?
I too have a X727 and had similar issues in the past while using a firmware designed for the X720, and alot of of Rom's come with the X720 firmware.
Try flashing the kernel from my Google Drive link below and see if that helps.
https://drive.google.com/open?id=1qAJrM8bIfI190W9w2gKR97xVhA-2lrZt
Meh 2 phones same software with different results.
I still don't really know why it was shutting off while charging overnight.
But the problem hasn't repeated itself since I stopped using one of the LeEco chargers. So at the moment I am blaming it on a bad charger base or wonky phone charging circuit, not the cable.
I was thinking my problem was software but I had already changed my roms Kernel to the appropriate blackscreen kernel from the roms stock kernel and the problem persisted on her phone until I stopped using the one included LeEco charger on my wife's phone, it's charging fine on the Samsung 2.0 quick charger, and mines charging without issues on the second LeEco 3.0 quick charger.
Unfortunately I can't just wipe her phone without causing her problems because she is always on her phone.
Is the problem hardware related in her phone is my current question? Or am I tracking a bug in the software.
If the problem is that charger base it should have zero effect if I put her phone on the 3.0 charger that I am using. If it is her phones charging hardware that test could permanently brick the phone Fry the charge port or battery ect...
So I am going to order another x727 if I can find another new one on ebay apparently most of the new US inventory is gone and the price is being gouged on the last of the new ones. :crying:
That way I will have a backup so I can do that test and have a phone to use for development. That's why I bought this phone in the first place.
I'm pretty sure that the one charger base is the whole problem but I can't afford to test that theory yet.
dlradlt said:
I still don't really know why it was shutting off while charging overnight.
But the problem hasn't repeated itself since I stopped using one of the LeEco chargers. So at the moment I am blaming it on a bad charger base or wonky phone charging circuit, not the cable.
I was thinking my problem was software but I had already changed my roms Kernel to the appropriate blackscreen kernel from the roms stock kernel and the problem persisted on her phone until I stopped using the one included LeEco charger on my wife's phone, it's charging fine on the Samsung 2.0 quick charger, and mines charging without issues on the second LeEco 3.0 quick charger.
Unfortunately I can't just wipe her phone without causing her problems because she is always on her phone.
Is the problem hardware related in her phone is my current question? Or am I tracking a bug in the software.
If the problem is that charger base it should have zero effect if I put her phone on the 3.0 charger that I am using. If it is her phones charging hardware that test could permanently brick the phone Fry the charge port or battery ect...
So I am going to order another x727 if I can find another new one on ebay apparently most of the new US inventory is gone and the price is being gouged on the last of the new ones. :crying:
That way I will have a backup so I can do that test and have a phone to use for development. That's why I bought this phone in the first place.
I'm pretty sure that the one charger base is the whole problem but I can't afford to test that theory yet.
Click to expand...
Click to collapse
You can buy usb voltage testers on Amazon.
If you happen to have a bad charging block just toss it, and buy a universally compatible Qualcomm Quick Charger. Such as this one: https://www.amazon.com/Charge-Anker-Charger-Compatible-PowerPort/dp/B016LO811S
Blitzwolf quickcharger and C cables. Bought 3 of each. All my charging issues disappeared when I bought them. Leeco supplied cable/charger are crap, why risk it?
FYI, I have experienced the condition where my charging stops randomly when using 2 different decent Samsung Travel model fast chargers. Stopped around 49% to 85%
Neither pulled in fast charging voltage-drawing a little under 5 volts and maybe 1100mah, as compared to 9 volts when connected to the Leeco charger.
Good point. Charger blocks are cheap phones aren't.
As addendum to this issue, after a year and half my charger port finally burned out. Probably abused the phone a bit and got some moisture in the port, maybe it was just a matter of time.
I was able to resurrect the phone though. The actual replacement board is available on eBay for $5-10 with tools. Hardest part was using a heat gun to remove the screen. There are guide on how to open up this unit.
One thing I will tell you I am that you don't need to remove the battery to get to the USB board.
Just another note, either hitting my phone with the heat gun or mucking around with the battery unnecessarily caused the battery to start to malfunction. Battery would discharge quickly and phone would shut off randomly. I replaced the battery with some cheap replacement from China, cost about $16.
Also replaced the screen because I tore the ribbon cable by accident. The screen cost about $13. Definitely cheaper than an iPhone replacement!