Samsung Overcharging at 4.3v - Galaxy Note 3 Q&A, Help & Troubleshooting

I just noticed that Samsung is treating our batteries in a rude manner: they limit the charging voltage at 4.3v which drastically reduces battery life. I have searched all over the internet and I could not find a way to limit the maximum charging voltage. Is there any way to limit the charging voltage?
I measured the voltage with an intelligent charger, at first I got an overvoltage error as I tried to discharge the battery. I really don't feel comfortable driving around with a bomb in my car as Samsung did have issues with exploding batteries. The ideal voltage must be around 4.1v, maximum 4.2v

So you measured the voltage while it was charging in the phone? Not sure how you hooked up an intelligent charger to the battery while it's in the phone charging by the phone.

they limit the charging voltage at 4.3v which drastically reduces battery life.
Click to expand...
Click to collapse
How does it reduce it?
And as far as I know, the charging voltage is 5.3V for the standard charger.

I was measuring the battery outside the phone after 1 day when I got out the battery out of the phone, fully charged.
Someguyfromhell, the USB voltage does not play a role here, the charging electronics is in the phone matters, USB provides, as you say, a fixed voltage.

Inx64, is there perhaps an ingeneering menu concerning the charging process where you can modify charging parameters?

I think you can measure voltage with this code *#0228#

Knowing the voltage from the menu is easy, controlling the charging voltage aparently not so easy, though.

Related

Make your own 5V backup battery?

Hey..
I want to make a pretty big backup battery for my TD2 or any other device that charges using a USB port.
I have 8 recharchable AA batteries (1,5V and 1800 mAh each) and want them in pairs off 4.
So two pairs off 6V packs and a total off 3600mAh.
But how do i acctually make this? Because i want to just plug it in some power socket so it will recharge the backup battery..
And when i need it. i just plug my phone in the backup battery so it will recharge and last ALLOT longer.
generally speaking, good socket adapters and car adapters (original ones too) have an automatic switch off when the battery gets fully charged. failing to do so can dramatically reduce the life of your battery. i think a safer (and more elegant too) solution is to buy a spare battery.
Sounds like hard work to me
Would something like this be better, I know its not as powerful as what you are proposing, and it has the cut out built into it as well.
PowerMonkey Classic
or get what I have which is this
Powermonkey Explorer
Highly recommended
PS Topic probably in wrong place, Accessories better place !?!
It charges via USB, mains, solar, has extra connectors for alot of devices.
Just my input...
If it was my problem, I would make a very simple constant current charger using a disused 19V laptop supply (doesn't everyone have one?) and a series resistor. The resistor value should be calculated from the charging current. You shouldn't go for a high current because you would need to cut off the charging when complete, or the cells would get very hot and be damaged. Proper chargers do this, but it takes a relatively complex circuit to manage the charge.
A low charge current (less than a tenth of the cell capacity) is good for cell lifespan and is safe to leave connected for a while even when the charge is complete without damaging the cell. The only drawback is a long charge time. I would select a current which charges fully in about 22 hours, so you put it on charge at a certain time and remove it next day at the same time - easy to remember.
With a 19V supply and a battery pack voltage of about 5 volts, a current of 200mA would need a resistor of value 70 Ohms - the nearest actual value is 68 ohms. Power rating would need to be 3W absolute minimum, try to get a 5W part. Your 3600mA pack should be charged after 22-24 hours. If your old laptop supply is different from 19V, you need to calculate the resistor accordingly. A low voltage supply wouldn't be suitable, because the charging current would vary too much.
Two points: Be sure to get the polarity of the laptop supply correct, and always have the supply connected to the mains when the battery pack is connected to it (otherwise the battery pack will try to put a current back through the supply, which it might not like!). Or you could incorporate a series 1A diode to protect against that happening.
I'm using a very simple supply like this to charge a 5v pack over 24 hours (it's from a bluetooth speaker - the internal charging circuit blew up) and it's perfect - I expect a long lifespan for the cells.
It's worth pointing out that putting 2 banks of cells in parallel, as you intend to, is not ideal unless the cells are matched, but in practice it shouldn't matter much.
there are 5v regulators u can buy to make your circuit work at 5v what is nice about that is that i can step up and step down voltages if the voltage fluctuates(battery power levels), btw the phones do the auto shutoff when the battery is full not the charger, because charger does not have a feedback system to read battery levels. Why do u think there is 3 or some times 4 connections on a battery and not 2
the problems u might encounter are amp levels due to long term charging but 4 1800mA AA battery will do a good charge for your phone
anyway here is a 5v reg from radioshack as referrence
http://www.radioshack.com/product/index.jsp?productId=2062599
jngtt said:
there are 5v regulators u can buy to make your circuit work at 5v what is nice about that is that i can step up and step down voltages if the voltage fluctuates(battery power levels), btw the phones do the auto shutoff when the battery is full not the charger, because charger does not have a feedback system to read battery levels. Why do u think there is 3 or some times 4 connections on a battery and not 2
the problems u might encounter are amp levels due to long term charging but 4 1800mA AA battery will do a good charge for your phone
anyway here is a 5v reg from radioshack as referrence
http://www.radioshack.com/product/index.jsp?productId=2062599
Click to expand...
Click to collapse
I might be misunderstanding you, but if you mean charging the cells from a 5v regulator, that would be a bad idea. NiCad or NiMH cells shouldn't and can't be charged from a constant voltage source. When you start charging the current would be too high (the 7805 would probably switch itself off) and the charge would never finish either, as 4 cells in series have an endpoint voltage of about 5.6 - 6.0V.
But perhaps you didn't mean that... (in which case apologies for butting in)
Pete_S said:
I might be misunderstanding you, but if you mean charging the cells from a 5v regulator, that would be a bad idea. NiCad or NiMH cells shouldn't and can't be charged from a constant voltage source. When you start charging the current would be too high (the 7805 would probably switch itself off) and the charge would never finish either, as 4 cells in series have an endpoint voltage of about 5.6 - 6.0V.
But perhaps you didn't mean that... (in which case apologies for butting in)
Click to expand...
Click to collapse
The 5v regulator just sets the voltage to be 5 volts as with all usb ports and usb chargers, the HTC charger that comes with the phones pushes 2A, the usb ports on our PCs pushes 0.5A. Ampere is just current, if u think that is too much amps u can put a fuse. This is the first time someone told me constant is bad
btw do u know how cells and battery work?
Going back to the original post, Overloaded just wanted a way to recharge his proposed battery pack from the mains, if I read it correctly.
I don't see where a 7805 5V regulator fits into this, either for charging the phone (the battery pack is 5-6V and the 7805 needs at least 7V to function) or for charging the battery pack (for reasons I've already outlined).
u are right, he does not need the 5v reg, infact all he needs to do is put the battery in serise with a diode to prevent feedback and he should be fine
Slightly off topic,
I recently got hold of two 11v LiPo packs, a regulator, a fast charger and all the cable and connectors to buils a 4400 mAh power souce. At 5v this gives circa. 8800 mAh. I bought it in a model shop sale and I've wanted to play around with the setup for some time.
The two packs are to big, but one on it's own is not too bad. And they were cheap!

[Q] Battery voltage 4.3V+ after 90%

So I was wondering if anybody knows what the normal battery voltage is supposed to be for this phone?
Because I have noticed that the battery voltage is spiking fairly often at 4.3V or more, when it's charging at 90% charged or above.
current
Which kernel are you using? There is a option to change charging current in some kernels.. check for it using EXtweaks. if so change it to a lower value.. default is 650mA on my s2.
UKROB86 said:
So I was wondering if anybody knows what the normal battery voltage is supposed to be for this phone?
Because I have noticed that the battery voltage is spiking fairly often at 4.3V or more, when it's charging at 90% charged or above.
Click to expand...
Click to collapse
On mine too! I've seen it at 4.3v+ when the battery is at 100% charge
I'm no theoretical electrical philosopher type, but voltage will read higher while you're charging. Your car battery is at ~12V while the car is off (it's a 12V battery), but while the car is running voltage will be ~14V
CMNein said:
I'm no theoretical electrical philosopher type, but voltage will read higher while you're charging. Your car battery is at ~12V while the car is off (it's a 12V battery), but while the car is running voltage will be ~14V
Click to expand...
Click to collapse
Which battery app is that?
Yea it only seems to spike above this when charging above 90% before 90% it never reaches 4.3V. I've set an alarm to tell me when it goes above 4.3V that's how I know.
UKROB86 said:
Which battery app is that?
Yea it only seems to spike above this when charging above 90% before 90% it never reaches 4.3V. I've set an alarm to tell me when it goes above 4.3V that's how I know.
Click to expand...
Click to collapse
Battery Widget? Reborn! <---seriously, that's the name
http://goo.gl/ZaZbR
Are people here with this problem also experiencing the problem of the phone detecting that it's on low power USB charge mode when it's actually plugged into the wall and supposed to be on AC??
Not me, but we don't know that this is a problem.
Sent from my Nexus 4 using Tapatalk 2

New note 4 and question about first charge

Hello friends,
So I just got my Note 4 and i'm wondering how long should I keep it in charge for the first time? And should I drain it on first use or charge it when it's at let's say 20%??
Thanks in advance.
14 hrs, dont drain, battery should be between 20-80% before charging in normal use, fast charge off.
@zurkx
Thanks for the reply.
Are you sure about the 14 hours??? I thought Li-ion batteries don't need that long of a charging time !!!
XeroHertZ said:
@zurkxAre you sure about the 14 hours??? I thought Li-ion batteries don't need that long of a charging time !!!
Click to expand...
Click to collapse
Please happily ignore that "advices".
Use Fast charge, charging takes exactly till the battery is full, that's about 1,5 hours for a full charge.
I don't see ANY sense in charging a LiIo battery "fuller than full", just impossible nonsense.
LiIo batteries suffer of aging, slightly increased by the number of charges, highly (!) increased by overheating, not of any memory effects.
There is NO "breaking in" of the Note 4s battery, amperage of fast charge doesn't come even near the safety limits, won't cause quick degradation or overheating.
So just don't listen go the immortal myths and "ancient wisdom" propagated by people not aware of the fact that battery technology indeed changed over the decades.
Chefproll said:
Please happily ignore that "advices".
Use Fast charge, charging takes exactly till the battery is full, that's about 1,5 hours for a full charge.
I don't see ANY sense in charging a LiIo battery "fuller than full", just impossible nonsense.
LiIo batteries suffer of aging, slightly increased by the number of charges, highly (!) increased by overheating, not of any memory effects.
There is NO "breaking in" of the Note 4s battery, amperage of fast charge doesn't come even near the safety limits, won't cause quick degradation or overheating.
So just don't listen go the immortal myths and "ancient wisdom" propagated by people not aware of the fact that battery technology indeed changed over the decades.
Click to expand...
Click to collapse
Thanks Chefprol.I have done some research on charging the battery and have come to a conclusion that once it's charged I can use it straight away but and then drain it to 18 to 20% then charge it fully.
Chefproll said:
Please happily ignore that "advices".
Use Fast charge, charging takes exactly till the battery is full, that's about 1,5 hours for a full charge.
I don't see ANY sense in charging a LiIo battery "fuller than full", just impossible nonsense.
LiIo batteries suffer of aging, slightly increased by the number of charges, highly (!) increased by overheating, not of any memory effects.
There is NO "breaking in" of the Note 4s battery, amperage of fast charge doesn't come even near the safety limits, won't cause quick degradation or overheating.
So just don't listen go the immortal myths and "ancient wisdom" propagated by people not aware of the fact that battery technology indeed changed over the decades.
Click to expand...
Click to collapse
Thanks ! i tought it would be a old myth to first drain the batery and then fully load it but as far as i know its only with old phones and mp3 players and such.
hope i will get my note 4 today ! waiting for it since monday
Fast Charge is not really a useful feature for me, it just hurts the battery more in the long run
what about the thoughts on conditioning the battery?
Sent from my SM-N910C using XDA Free mobile app
There's no need to condition the battery, its a lithium battery.
If you're having battery drain issues I would suggest you clear your data cache.
ddaharu said:
what about the thoughts on conditioning the battery?
Sent from my SM-N910C using XDA Free mobile app
Click to expand...
Click to collapse
this is the same guy making up stuff about the note 4 GPS being bad.
dont listen to fools.
First charge needs to be 14 hours to trickle charge the battery to full and make sure the meter is calibrated to a full battery.
fast charge does reduce battery life since it charges at higher voltage and amperage. any battery gets damaged a little by that. best is a slow charge (preferably Qi) at a normal charging voltage. Slower the better for longer battery life. if you want convenience over battery life then by all means fast charge and mess it up and replace after 2-3 years.
Who's post are you referring to?
zurkx said:
this is the same guy making up stuff about the note 4 GPS being bad.
dont listen to fools.
First charge needs to be 14 hours to trickle charge the battery to full and make sure the meter is calibrated to a full battery.
fast charge does reduce battery life since it charges at higher voltage and amperage. any battery gets damaged a little by that. best is a slow charge (preferably Qi) at a normal charging voltage. Slower the better for longer battery life. if you want convenience over battery life then by all means fast charge and mess it up and replace after 2-3 years.
Click to expand...
Click to collapse
arjun90 said:
Who's post are you referring to?
Click to expand...
Click to collapse
It's mine. That guy already bumped into me a while ago, now it's time for his revenge.
I'll care for that, now...
---------- Post added at 02:09 PM ---------- Previous post was at 01:32 PM ----------
zurkx said:
this is the same guy making up stuff about the note 4 GPS being bad.
Click to expand...
Click to collapse
So here we go; you asked for it...
My critism about the Note 4 refers to it's GPS receiver, which is "deaf" compared to the competition and shows frequent signal drops.
More here: http://forum.xda-developers.com/note-4/general/gps-close-to-unusable-t2948602
dont listen to fools.
Click to expand...
Click to collapse
Indeed - have a look:
First charge needs to be 14 hours to trickle charge the battery to full and make sure the meter is calibrated to a full battery.
Click to expand...
Click to collapse
I already advised to realize this is 2014 battery technology, not the ancient batteries of the past.
Short: There is no "trickle charge" with Lithium-Ion-batteries.
See this: http://batteryuniversity.com/learn/article/charging_lithium_ion_batteries - quote: "The difference lies in a higher voltage per cell, tighter voltage tolerance and the absence of trickle or float charge at full charge."
fast charge does reduce battery life since it charges at higher voltage and amperage. any battery gets damaged a little by that.
Click to expand...
Click to collapse
Quote: "The charge rate of a typical consumer Li-ion battery is between 0.5 and 1C in Stage 1, and the charge time is about three hours. Manufacturers recommend charging the 18650 cell at 0.8C or less."
"C" is the capacity, 3220 mAh with our Note 4's battery. So we're save to charge with a current (milliamperes, "mA") of up to 3220 mA - if we follow the manufacturer's advice for the older type of batteries of that kind (18650 is an old warrior in the field), there's still 2576 A left.
So what does our fast charge supply deliver ? Look at it's ratings: 5 V, 2 A (2000 mA).
So even fast charge is far below the limits - our real limit is 3220 mA, but fast charging just uses 2000 mA.
Sound and safe.
Wonder about me highlighting "higher voltage" in zurkx's highly elaborate statement in red ? - Answer is above: The voltage does NOT change, it is NOT higher. Of course not !
The worst enemies of LiIon batteries are heat and age.
Heat is generated by a) placing the device at a hot spot (like behind the car's windscreen or in bright sunlight), b) by using demanding features like 4K video recording or highend games, c) by charging .
a) Your call. Just don't let your Note get hot. Overheating destroys your battery in no time. We're lucky we've got an exchangeable battery - so nothing to really worry about.
b) Your call. See a).
c) Charging produces some heat, especially on the "last mile", when the battery is "almost full", because the battery is a bit reluctant of getting charged up to the brim. So more heat is generated in that last phase. It's not much, won't reach the safety limits. It just can't, because the build-in charging circuits limits the current if heat gets up.
By the way: That integrated charging circuits are propped with safety measures, checking charge, condition, temperature and the like.
So even if you hook up a charger capable of providing 20 whopping amperes, the circuits just won't let that happen.
There is no way of providing the battery too much current; it's automatically limited.
best is a slow charge (preferably Qi) at a normal charging voltage. Slower the better for longer battery life.
Click to expand...
Click to collapse
Again; welcome to the 21st century. We don't need any slow charge. It's the opposite.
Charging right slow has the danger that apps on the phone draw more power than the charge provides. That may drain your battery instead of filling it.
Plus: If you hook up the charger for long, it will be recharged (charge gets "topped off") frequenly. And every new charging attempt has a slightly negative impact on the battery's life; it's like wearing it a bit down. - Charge often, reduce your battery's life. That damage is tiny, by the way. But it is there, so hooking up your charger for many hours slowly kills your battery.
Now for the aging:
if you want convenience over battery life then by all means fast charge and mess it up and replace after 2-3 years.
Click to expand...
Click to collapse
LiIon battery ARE AGING, up from the time of manufacture.
You all know that: You charge a device like you're told by the instructions - but after 1 to 3 years you notice a severe drop of usage time, a drop of capacity.
That's aging.
NOTHING you can do against that but buying a new battery.
So your battery will lose it's capacity over time; if you use it or not. You all know that, you all experienced that.
With the Note 4, we can happily buy a new battery if the old one runs out; it's that simple. But as a normal Li Ion battery reaches it's shelf live after 2 or 3 years anyway, there's NO (!) need of burdening it and you with slow charge. The results are exactly the same, with the difference that you save precious time with fast charging.
And now allow me quoting again:
dont listen to fools.
Click to expand...
Click to collapse
Have a nice day, all of you except one.
youre completely wrong.
The QuickCharge tech charges at higher VOLTAGE and AMPERAGE.
http://www.androidauthority.com/quick-charge-explained-563838/
Quick Charge 2.0
Voltages 5v 5v / 9v / 12v
Max Current 2A 3A
Snapdragon 200, 400, 410, 615, 800, 801, 805
The rest is just BS as usual. You have no idea what youre talking about. Dumping 9V (Samsung Note 4 AFC) into a 5V battery makes it charge hotter and faster and degrades it significantly. After two weeks of fast charge i lost a small chunk off the top of my brand new battery.
just bad advice as usual.
zurkx said:
youre completely wrong.
Click to expand...
Click to collapse
Yes, indeed. I was completely wrong by believing you'd understand some simple things.
In fact, I am not sure if I should take your statements for serious or just for a joke.
The QuickCharge tech charges at higher VOLTAGE and AMPERAGE.
Voltages 5v 5v / 9v / 12v
Max Current 2A 3A
Click to expand...
Click to collapse
So you REALLY believe that changes of the output voltage of the POWER SUPPLY lead to the BATTERY charged with more volts ?
You can't be serious. That's technically impossible.
Let's put it easy:
If you insert your power supply into a 110 V receptacle in the USA, you get 5 V output.
So according to your "logic", using the same power supply in Europe (230 V) increases the voltage to 10 V ?
No. Just NO.
That higher POWER SUPPLY voltage is used for fulfilling the rule W = V * A (Watt = Volt * Ampere); just to be able to squeeze more power through the power supply's cable.
In the Note 4 and in the charging circuit, that voltage OF COURSE will be regulated down to the regular charging voltage - just with the benefit to carry more amperes.
So the CHARGING VOLTAGE stays the same; it does NOT follow the voltage supplied by the POWER SUPPLY. It never does.
So fast charging does NOT (read that: NOT !) increase the charging voltage. It cannot.
Got that now ? - Or do I need to put it ever more simple ?
It does not help using swearing words like "fool" or "bull****".
But it could help just saying: "Oh, sorry, I was wrong. - My apologies."
Make yourself at home with the basics of lithium ion and charging technology. THEN speak up.
Ah, overlooked something:
After two weeks of fast charge i lost a small chunk off the top of my brand new battery.
Click to expand...
Click to collapse
1) Hope that chunk fell somewhere you were able to pick it up again.
2) How to you KNOW that ? I expect a detailled description about how you did the magic of finding out that your battery doesn't charge to 100 %.
3) If you KNEW that fast charging would kill your battery, wise man - why did you allegedly use the feature ? - Sorry, man... Your statements are not very trustworthy. I guess you never used that feature, just say so to strengthen your shaky point of view. Please don't mess with a perception psychologist.
4) If your battery really suffered, that might be due to your highly acclaimed and absolutely pointless 14-hours-charging-marathons, causing a permanent charge on/charge off cycle, weakening your battery.
So please just stop bashing a real useful feature of the Note 4. If you just love waiting ages for batteries to charge - your preference. But please stop spreading false facts about things you very obviously are not at home with.
And a last thing which might stop that aimless harassing fire of yours: I am HAM, a licenced amateur radio operator, holding the highest German licence class. These are the people who know a bit about volts and amperes.
how hard is it for you to understand that quickcharge 2.0 outputs higher VOLTAGE and AMPERAGE to charge the battery ? The charger charges the BATTERY AT 9V 1.67A up to 50% and then switches over to the regular 5V 2A charge rate. INPUT VOLTAGE (110V or 230V) has nothing to do with OUTPUT VOLTAGE. It charges the battery at 9V REGARDLESS of INPUT VOLTAGE.
edit:
also it has nothing to do with the cable. you must be crazy if you think a cable issue exists whether you transfer 15W or 10W across it. the cable is rated for well beyond that. the reason for the higher voltage is that modern lithium ions can accept high voltage charge rates with limited damage at low amperage. the reason they cut it off at 50% is the battery would be severely damaged if you tried to charge it to 100% and overshot. so yes quickcharge 2.0 really does charge your battery at a higher voltage than it was designed to be charged at. and no they dont have a magical transformer on your phone to go from 9V to 5V. otherwise they would be using it all the time and fast charge 9V to 100%. the wall plug is the only thing which has a transformer and the phone uses what it gets from there. they arent going to build half of another wall plug (9V DC-DC) and stuff it into the phone. it would generate heat and add bulk. Instead the PMIC "spikes" the battery with higher voltage and keeps it roughly constant (load modulation) by communicating with the quickcharge 2.0 AFC on the other end.
Hopeless.
I just love these battery threads, there's always some muppet who says the battery needs conditioning and must first be charged for a suitably ridiculous length of time. When it's charged it's charged, lithium batteries have no memory effect so the idea of conditioning them is moronic
Sent from my SM-N910F using XDA Free mobile app
yes they have no memory effect. why ? because you say so.
other people believe otherwise because they actually test things out for themselves :
http://www.psi.ch/media/memory-effect-now-also-found-in-lithium-ion-batteries
http://pocketnow.com/2013/05/03/li-ion-batteries-memory-effect
http://www.nature.com/nmat/journal/v12/n6/full/nmat3623.html
no need to keep it for 14 hours, as they said in the catalog you only need to charge it till it's full, then unplug the charger.
Hello again !
After all cooled down a bit, here's some more information about that dreaded HIGH VOLTAGE fast charging uses which seemingly makes some of you wet your pants.
First, there's an experiment you can do yourself. You don't need to do - but it's quite impressive and gives you some proof of the things I say.
Get two 9 V batteries; the small rectangle ones we all know. Connect the positive contact of the first battery with the negative contact of the second. Thus you get an 18 volts DC power source.
Get a thin, isolated wire, short-circuit the open contacts with the wire. Wait.
Nothing special will happen, maybe the wire will get a little warm - and your batteries will eventually die.
(If you use a VERY thing wires, it might heat up.)
Now take a length of the same wire, do the same using your car's battery (12 – 13.8 V DC).
WARNING !
1) Take the battery out of the car, set it on solid ground with nothing combustible near !!! Do NOT try this with the battery still in the car !!!
2) Use pliers to connect the wire with the battery contacts !!!
3) Do that OUTDOORS !!!
Short-circuit the battery contacts using the pliers with the wire.
You don't need to wait. The cable will turn into a smoking, burning, white-hot thing in an instant.
Huh ? - We've got 18 V with just nothing happening, we've got just 12 V wreaking instant havoc and destruction !?
Amperage is the key !
Voltage alone does not cause the destruction, it's the amperage.
9 V batteries cannot provide sufficient amperes for killing the wire; 12 V car batteries do.
Short: High amperage kills wires, high voltage doesn't.
So back to our topic...
To fast charge our Note 4's battery, we need power, watts. But the tiny wires in the Note 4 can't withstand a high wattage; they would heat up like the wire connected to the 12 V car battery.
So Samsung uses a little trick, according to Ohm's law: W = V * A, W is watts, V is volts, A is amperes.
So we can achieve a high wattage by EITHER using a higher voltage OR a higher amperage.
Higher amperage does not work because it will kill the tiny wires in the Note.
So Samsung raised the voltage for carrying more watts from the power supply via the internal Note 4's cabling to the charging circuit.
That higher voltage gets transformed down to the normal charging voltage at the charging circuit.
Your battery is charged with the usual voltage, but with the benefits of a higher amperage.
That's all the magic: That higher voltage is used to carry more wattage to the charging circuit, but not beyond. Nothing else.
And that's why it does not harm your battery; charging voltage will not change - your battery just gets charged faster, always monitored by the charging circuit which will lower the charge accordingly if needed, so your battery will always be safe. That's why the "last mile" (charge from about 92 % to 100 %) takes more time to charge - because the charging circuit automatically lowers the charge to protect your battery.
So don't be afraid of that higher voltage; it never reaches your battery, it is just a means for transferring higher wattage via tiny wires.
Note: You ever wondered why Europeans use 230 V instead of 110 V ? - That's the reason. Being able to carry more watts over regular power lines without risking the wires heating up too much. It's not a means of destruction, it's the opposite.

Battery Charging Voltage too high?

Ive bought my n6p a few days back but is already a second hand.
Though its in perfect condition I would still love to take care of the battery since I know theres been a large chunks of battery cycle depleted already.
An average li-ion has about 300-500 charges before battery shows signs of deterioration.
In order to increase the battery life cycle, charging it with only 4.05 volts as conpsred to 4.20+ is the best way to take care of li-ion cells.
The problem is, the charger that comes with n6p produces volts from 4.16 as the minimum up to 4.4+ which is basicslly dtressful to the battery, plus letting it be plugged in to 100% increases temperature and so on.
I can go on.
Now, I have the habit and got an app that will chsrge the battery judt to 78% or 85% which turns down voltage just below 4.2, however there sre still instances that the voltage goes more than 4.2 even though im using a standard 900mah charger and not the rapid charger (original usb cable from huawei type a-std)
The question is, is there anyway to turn down voltage for n6p?
If not, any electrical engineer or anyone who has great knowledge backed with experience here to tell the comunity if chsrging in 4.2+ v is safe for n6p and why? Thanks
Charge voltage above 4,23ish is not good for lithium battery cells. Mine has a reported battery voltage of 4,4 volts.(!!)
As to the actual science of overcharging/over-volting lithium batteries, I don't think there's any long term 500-1000 charge cycle data. I do however have experience from radiocontrolled 1/8 scale lithium powered cars. Absolutely none of the lithium battery sellers or charger manufactors​ approve charging over 4,2volts. If you have a higher end charger you can push them to 4,25v-4,35v for cheaty improved off-the-line race starts but the charger will beep and complain/warn you constantly about the risks.
I was slightly concerned about charge voltage aswell, optimum charge modes for lithium cells are constant current ie 1800 mAh for this device until battery reaches 4,05 ish volts then constant voltage until 4,2v but it seems that phone manufacturers are either calibrating the measurement data or pushing the charge rate for convenience. If the latter is true you have all the right to call it planned obsolescence if the non-existent science of overvoltage charging is correct. The most accurate way to measure battery voltage would be to probe the battery directly while charging and while fully charged with a digital multimeter

Max Amperage

Hi
we have the transformer with 1.8 mAh but this is quick charge 3.0.
So what is the max amperage that LG G6 can support?
thank you all
I saw max 2.5A incoming according to Ampere and Battery monitor widget.
dedovec said:
I saw max 2.5A incoming according to Ampere and Battery monitor widget.
Click to expand...
Click to collapse
is it an app?
overall speed depends on voltage too (higher amperage is good, and higher voltage is good too)
KingFatty said:
overall speed depends on voltage too (higher amperage is good, and higher voltage is good too)
Click to expand...
Click to collapse
Yeah this is right but all elettronic components have a threshold. If you exceed the limit the components burn. So this is the question. What is this limit?
On the charger there is 1.8 mAh for current. But my powebank have 2.1 mAh for the output. So the LG G6 support this amperage?
varefaz said:
is it an app?
Click to expand...
Click to collapse
Yes, you can find both of the apps on Play store.
varefaz said:
Yeah this is right but all elettronic components have a threshold. If you exceed the limit the components burn. So this is the question. What is this limit?
On the charger there is 1.8 mAh for current. But my powebank have 2.1 mAh for the output. So the LG G6 support this amperage?
Click to expand...
Click to collapse
Well, kind of. The phone will not draw more current than it is able to handle. Using a power source that's capable of 2.1A will not hurt a device that can only draw 1A. The rating of your powerbank is merely the maximum current it can supply while maintaining its rated voltage.
See this article that shows how the phone is smart and will vary the current (amps) that it pulls from the charger, and will be careful to protect the battery and not pull too much current as the battery reaches full charge:
https://gtrusted.com/the-lg-g6-charger-uses-qualcomm-quick-charge-3-0-instead-of-usb-power-delivery
Example snippet from the article: "while the current jumps around before settling at 1.7 amps (this delivering 15.3 watts). ... In the first 60 minutes of charging, the voltage stays at 9 volts while the current steps several times down to 1.3 amps"
G6 charging slow
My g6 is charging crazy slow no matter what...I use amperage app and I can only get out to draw 800mah, no matter what I plug into.(2.1a etc)...doesthis mean I should replace its battery or what?
toohey503 said:
My g6 is charging crazy slow no matter what...I use amperage app and I can only get out to draw 800mah, no matter what I plug into.(2.1a etc)...doesthis mean I should replace its battery or what?
Click to expand...
Click to collapse
If your screen is on, the charging current decreases to max 800mA so the battery won't overheat during charging and phone usage.
If the screen is off for longer period of time and the phone still is charging slowly, it is usually caused by warm phone or environment OR heavy tasks performing in background. If none of these conditions apply to your case then (unless you are using original charger and original cable included in the box) it might be something wrong with the phone.
I have USB port tester from AliExpress and I made some tests of charging currents and voltage on my BlitzWolf BW-S5 charger as it's QuickCharge 3.0 certified charger.
With the screen off, the phone does ramp up the voltage starting from 5V. The steps are 200mV every couple of seconds. It's absolutely in line with QuickCharge 3.0 specification BUT! the phone ramps up only to 9V and then stops. It never reached 12V - maximum QC3.0 voltage.
I did plenty of tests and the voltage always stayed at 9V.
Also the current never reached QC3.0's 9V's maximum value of 2A. It usually was around 1,5A-1,8A.
I even placed my phone in the fridge a couple of times, no result
So my opinion is G6 is QuickCharge... 2.5 compatible? Voltage stepping from QC3.0 applies to our phones but either voltage or current does not match QC3.0 maximum values that can be pushed to the phone.
Also charging with original LG charger included in the box and BlitzWolf charger takes almost the same amount of time. Sometimes LG is faster, sometimes BlitzWolf is faster.

Categories

Resources