Appologies for duplicating this post here and on the accessories forum but needed a quick answer!
Anyone technically minded who can answer this....
I am using a HTC Touch Pro mains charger for my X1 (as it has a longer cable) which charges the X1 fully.
I did notice the back of the X1 getting a little warm, so double checked the outputs on the original X1 charger and the TouchPro one.
X1 = 5v 700mA
TouchPro = 5v 1A
Is this likely to be a problem?
You should definately not mix power adapters like that. On the other hand they both use mini-USB plugs so if they follow the USB standard (Battery Charging Specification) you are okay. The spec allows for up to 1,8 A, but that does not mean the X1 can take it.
I would have rather bought an extension cable for the X1 charger. Then you are safe _if_ anything happens and you damage your X1. :|
If you need a longer cable, just plug in a standard USB extension cable It will work perfectly and you can extend to plenty of meters if you need to.
Regarding the use of the 1A charger, I don't think it will be that much of a problem, but I wouldn't count on it to cause no problems either. The battery getting warm is not that odd when charging, as batteries generally generate heat when they get charged. The fact that it gets warmer with the 1A, instead of the 0.7A charger, is just because you charge the battery quicker, which in turn causes more heat. You should keep it mind though that heat is a bad thing for LiIon batteries like the X1 uses. Having it being warm reduces lifetime quicker then when it's cool.
maedox said:
You should definately not mix power adapters like that. On the other hand they both use mini-USB plugs so if they follow the USB standard (Battery Charging Specification) you are okay. The spec allows for up to 1,8 A, but that does not mean the X1 can take it.
I would have rather bought an extension cable for the X1 charger. Then you are safe _if_ anything happens and you damage your X1. :|
Click to expand...
Click to collapse
Thanks for your help. I assumed - like you - that USB was USB in regards to power output. But I will take your advice and get an extension and stop using the old one.
Cheers
.
What I've seen on battery charging on mobile phones is that they have an internal intelligent charging system, at least the Siemens and Wavecom systems I've been using.
LiIon batteries are normally charged using constant voltage/constant current until a certain voltage level is reached, ~4.2V for 3.6V batteries. Then the charge current is reduced with a constant voltage until the charging current reaches zero. This implies that from a 5V charger there has to be some sort of internal charging system to make it work.
If you get a charger for USB it is the internal system that handles the current rate, not the charger. The specs on the charger shows the maximum current possible, not the charger's constant charge rate.
So if the phone's internal charging system thinks it's ok with 1A it will use it, but as mentioned earlier, it will produce more heat, but with a faster charging.
Though USB charging specs is limited to 1.8A, most charging circuits is possible to set to less current, with some part charging the battery, the rest powering the phone.
on8a said:
What I've seen on battery charging on mobile phones is that they have an internal intelligent charging system, at least the Siemens and Wavecom systems I've been using.
LiIon batteries are normally charged using constant voltage/constant current until a certain voltage level is reached, ~4.2V for 3.6V batteries. Then the charge current is reduced with a constant voltage until the charging current reaches zero. This implies that from a 5V charger there has to be some sort of internal charging system to make it work.
If you get a charger for USB it is the internal system that handles the current rate, not the charger. The specs on the charger shows the maximum current possible, not the charger's constant charge rate.
So if the phone's internal charging system thinks it's ok with 1A it will use it, but as mentioned earlier, it will produce more heat, but with a faster charging.
Though USB charging specs is limited to 1.8A, most charging circuits is possible to set to less current, with some part charging the battery, the rest powering the phone.
Click to expand...
Click to collapse
Thanks very much that's very informative.
I am wondering if the X1 has this internal intelligent charging system you mentioned. Would be useful to know.
Actually the mA ratings are what the charger can deliver. Not what they actually will deliver. A 700mA rated charger will supply up to 700mA if asked for by the device. This is a two way thing. The charger side will never provide more than it's maximum rating, it's a built in safety thing. The charged side should never ask for more than it can handle, providing that it is a well built piece of electronics. I trust the X1 to be well built on this. USB standards rate a maximum of 500mA for high power devices. The X1 does adapt and thus will charge slower.
Glad this is being discussed; as my X1 is a UK model, I don't have a US wall charger.
I found some on monoprice.com, see under the Power to USB section at the bottom:
http://www.monoprice.com/products/subdepartment.asp?c_id=103&cp_id=10311
They have 3 varieties:
High-Speed WALL Power to USB Female Converter (1000mah) - Black
High-Speed WALL Power to USB Female Converter (1000mah) - White
[**cant tell a discernable difference between those two, but one is larger...**]
WALL Power to USB Female CHARGER Converter - Black (500mah)
[**many people complaining about this not charging their devices; either it really does suck or they didnt get one with enough output**]
I WONT kill the phone picking up a 1000mah?
Anyone else in my situation needing a new US charger, this site has great prices on this stuff... these adapters are under 2 bucks, and USB cables are super-cheap too!
Related
Hi.
What is a correct voltage to charge Xperia's battery?
Is it 4.3V, 4.6V, 4.7V or 5V?
I took my Xperia from some cheap shop with no original wall charger and I'm not sure the original USB cable doesn't decrease the USB 5V to something less.
Also what is the maximum current I can use for charging? Can I use a custom made power supply with 1A or 1.5A? That would be much faster for 1500mAh Xperia's battery...
Thanks in advance.
miniUSB is always 5volts
but with all such things
it works with +-20%
and yes you can use different levels of amps
which is also why the wall charger charge much faster
then having it charge over usb
2Rudegar
Thanks.
I just now discovered the battery is actually 3.6V 1500mAh and not 4.6V as I thought earlier. That means the X1 has internal voltage regulation circuit to downgrade USB or the wall charger's 5V to 3.6V.
What I was afraid of the original USB cable has internal 5V-to-3.6V regulator. But as far as I can see the only things it has are two ferrite blocks.
I believe now I can supply 5V 1A (up to 1.5A) to Xperia without risking to ruin tho phone. Better add a diode to further protect the unit...
Stock SE charger is 5v 700mah.
USB from PC supplies 100ma. This is why USB from PC takes forever to charge if phone is not off or in standby.
Do mind that it's generally better for a battery if you charge it slowly.
Ok, I do understand the idea of slow charge is better vs the fast one.
I'm going to build a permanent car charger unit with about 4.7-5.0V 500-600mA.
Thanks to everyone.
Almost all cellular phones/PDAs have an internal charge (including the xperia) circuit that does all that is needed for the battery to safely recharge, for the newer the battery technology the charger circuit is more complex.
Also, the internal circuit "sets" the battery current charge according the actual level of remaining charge, while the battery is almost completely discharged, the circuit (hence the phone) ask for more current to the power supply.
My xperia charger is rated 5V, 1A, maximum allowed current for a computer USB port is 500mA (total for all available ports), most computers do monitor (if at all) the total current of usb ports, thus if you have only the xperia connected, the computer most likely will supply up to 500mA to it, only expensive mother boards tend to have a better current control for usb ports.
Stick closer to the 5V required, normally, once you exceed the current needs of the PDA -in terms of charger power availabilty-, all that exceeding current availability will be left unused -if everything's ok with the phone and the battery.
Not cheap, but this is what I'm going to fit to my motorbike
http://www.mobilefun.co.uk/product/17362.htm
Hey..
I want to make a pretty big backup battery for my TD2 or any other device that charges using a USB port.
I have 8 recharchable AA batteries (1,5V and 1800 mAh each) and want them in pairs off 4.
So two pairs off 6V packs and a total off 3600mAh.
But how do i acctually make this? Because i want to just plug it in some power socket so it will recharge the backup battery..
And when i need it. i just plug my phone in the backup battery so it will recharge and last ALLOT longer.
generally speaking, good socket adapters and car adapters (original ones too) have an automatic switch off when the battery gets fully charged. failing to do so can dramatically reduce the life of your battery. i think a safer (and more elegant too) solution is to buy a spare battery.
Sounds like hard work to me
Would something like this be better, I know its not as powerful as what you are proposing, and it has the cut out built into it as well.
PowerMonkey Classic
or get what I have which is this
Powermonkey Explorer
Highly recommended
PS Topic probably in wrong place, Accessories better place !?!
It charges via USB, mains, solar, has extra connectors for alot of devices.
Just my input...
If it was my problem, I would make a very simple constant current charger using a disused 19V laptop supply (doesn't everyone have one?) and a series resistor. The resistor value should be calculated from the charging current. You shouldn't go for a high current because you would need to cut off the charging when complete, or the cells would get very hot and be damaged. Proper chargers do this, but it takes a relatively complex circuit to manage the charge.
A low charge current (less than a tenth of the cell capacity) is good for cell lifespan and is safe to leave connected for a while even when the charge is complete without damaging the cell. The only drawback is a long charge time. I would select a current which charges fully in about 22 hours, so you put it on charge at a certain time and remove it next day at the same time - easy to remember.
With a 19V supply and a battery pack voltage of about 5 volts, a current of 200mA would need a resistor of value 70 Ohms - the nearest actual value is 68 ohms. Power rating would need to be 3W absolute minimum, try to get a 5W part. Your 3600mA pack should be charged after 22-24 hours. If your old laptop supply is different from 19V, you need to calculate the resistor accordingly. A low voltage supply wouldn't be suitable, because the charging current would vary too much.
Two points: Be sure to get the polarity of the laptop supply correct, and always have the supply connected to the mains when the battery pack is connected to it (otherwise the battery pack will try to put a current back through the supply, which it might not like!). Or you could incorporate a series 1A diode to protect against that happening.
I'm using a very simple supply like this to charge a 5v pack over 24 hours (it's from a bluetooth speaker - the internal charging circuit blew up) and it's perfect - I expect a long lifespan for the cells.
It's worth pointing out that putting 2 banks of cells in parallel, as you intend to, is not ideal unless the cells are matched, but in practice it shouldn't matter much.
there are 5v regulators u can buy to make your circuit work at 5v what is nice about that is that i can step up and step down voltages if the voltage fluctuates(battery power levels), btw the phones do the auto shutoff when the battery is full not the charger, because charger does not have a feedback system to read battery levels. Why do u think there is 3 or some times 4 connections on a battery and not 2
the problems u might encounter are amp levels due to long term charging but 4 1800mA AA battery will do a good charge for your phone
anyway here is a 5v reg from radioshack as referrence
http://www.radioshack.com/product/index.jsp?productId=2062599
jngtt said:
there are 5v regulators u can buy to make your circuit work at 5v what is nice about that is that i can step up and step down voltages if the voltage fluctuates(battery power levels), btw the phones do the auto shutoff when the battery is full not the charger, because charger does not have a feedback system to read battery levels. Why do u think there is 3 or some times 4 connections on a battery and not 2
the problems u might encounter are amp levels due to long term charging but 4 1800mA AA battery will do a good charge for your phone
anyway here is a 5v reg from radioshack as referrence
http://www.radioshack.com/product/index.jsp?productId=2062599
Click to expand...
Click to collapse
I might be misunderstanding you, but if you mean charging the cells from a 5v regulator, that would be a bad idea. NiCad or NiMH cells shouldn't and can't be charged from a constant voltage source. When you start charging the current would be too high (the 7805 would probably switch itself off) and the charge would never finish either, as 4 cells in series have an endpoint voltage of about 5.6 - 6.0V.
But perhaps you didn't mean that... (in which case apologies for butting in)
Pete_S said:
I might be misunderstanding you, but if you mean charging the cells from a 5v regulator, that would be a bad idea. NiCad or NiMH cells shouldn't and can't be charged from a constant voltage source. When you start charging the current would be too high (the 7805 would probably switch itself off) and the charge would never finish either, as 4 cells in series have an endpoint voltage of about 5.6 - 6.0V.
But perhaps you didn't mean that... (in which case apologies for butting in)
Click to expand...
Click to collapse
The 5v regulator just sets the voltage to be 5 volts as with all usb ports and usb chargers, the HTC charger that comes with the phones pushes 2A, the usb ports on our PCs pushes 0.5A. Ampere is just current, if u think that is too much amps u can put a fuse. This is the first time someone told me constant is bad
btw do u know how cells and battery work?
Going back to the original post, Overloaded just wanted a way to recharge his proposed battery pack from the mains, if I read it correctly.
I don't see where a 7805 5V regulator fits into this, either for charging the phone (the battery pack is 5-6V and the 7805 needs at least 7V to function) or for charging the battery pack (for reasons I've already outlined).
u are right, he does not need the 5v reg, infact all he needs to do is put the battery in serise with a diode to prevent feedback and he should be fine
Slightly off topic,
I recently got hold of two 11v LiPo packs, a regulator, a fast charger and all the cable and connectors to buils a 4400 mAh power souce. At 5v this gives circa. 8800 mAh. I bought it in a model shop sale and I've wanted to play around with the setup for some time.
The two packs are to big, but one on it's own is not too bad. And they were cheap!
I recently bought new tab, it is getting charged normally when plugged in power socket. But when i plug it in laptop USB port or any PC port, it would not charge instead I can transfer data etc. I am using the original USB cable which came in box. Does any one has faced same issue?
Sent from my GT-P1000 using XDA App
charging
Samsung have engineered it so you have to even use their mains charger. Car chargers and wall chargers have to be Samsung tab brand. Not sure but there is talk of AVUSB charge cable being released. Pretty sure this has already been covered.
Turn off the screen and wifi and data network and it will charge very slowly over usb.
Sent from my SGH-T849 using XDA App
The fact of the matter is the tablet requires more/not the right amount of power that your USB port can deliver.
We always here all these theories about why.. but here is the simple and only reason why.
To keep the techinical stuff short and simple, Li-Poly and other batteries have a predetermined lifetime and one of the determining factors to how long they last is the rate of charge (charge rate) time and the exact amount of mHa capacity of the battery.
This is NOT a Samsung marketing scheme as it is exactly the same reason the iPad cannot be charged through USB.
I'll give you a quick example:
If you buy rechargable batteries, Ni-Mh that state they can be charged at 2500mHa (capacity/rate) and you charge them on a 15 minute charger that delivers the right amount of power (1.2 volts) and not the correct rate (lets say they are rated for 2500 and you use a charger thats rated for more) this causes the battery life to be deminished drasitcally.
If you charge the same 2500mha batteries with a lower rating charger, they will take a lot longer to charge completely since it is at a slow mHa, but also this slower charging will provide a longer battery life.
Therefore their charger (and this is the reason why you must use their charger or any charger with the same mHa rating) is made to provide the optimal amount of charge rate (mHa) giving you the best battery life vs charge time.
In conclusion the Tabs hardware will limit the rate of charge through USB in order to:
a) Not overload the power on your USB, given that all this varies according to each system configuration (although it should not! but reality is.. it does)
and
b) In order to not improperly charge your tab, reducing your battery life.
I know the technical parts are vaguely/poorly explained but I work with Li-Po and other types so this is the simplest way to explain all this without causing too much confusion.
Hope this made sense
Cheers
tj1984 said:
Samsung have engineered it so you have to even use their mains charger. Car chargers and wall chargers have to be Samsung tab brand. Not sure but there is talk of AVUSB charge cable being released. Pretty sure this has already been covered.
Click to expand...
Click to collapse
Not true.
Samsung is using standard chargers that are wired to identify themselves as high current chargers. A non Samsung charger / external battery will likely have the same wiring because this wiring is part of the usb-specification.
The Tab will even charge from your usb-port but only slowly and if you turn off the screen since usb-ports only have 500mA (the charger has 2A).
So all the Tab does is check for this high-power-wiring. If it detects it it shows you the charge-icon, if it doesn't it assumes a usb-connection to your computer and does not pretend to charge (even if it does).
Interesting! So then a generic car cig lighter accessory with a standard USB port on it should charge it as a high output conection, right?
I am able to charge my Tab using usb connection to my PC by turning the device off. Same with an Energizer XP8000 external battery. Leaving the device on will take a long time to charge or not at all if you are using it while charging.
So we just upgraded to Note 3 from our galaxy 3 (wife and I)...
I noticed the charger is a 2 amp charger compared to the SGS 3's 1 amp.
I started reading some threads here and found out the USB 3.0 cable will not charge the phone faster unless it's plugged into the computer.
Apparently the PCM also limits the phone to charging at 900ma. (not verified)
so I'm curious now.... at what amps does this phone charge? I'm trying to get a spare charger to keep in the car, and also trying to get a usb car charger if I can benefit from the 2.1 amp one instead of the 1 amp one that's in there now....
Can anyone tell me if I should get a 2.1amp charger or stick with 1 amp chargers as the spares if it'll still charge at 900ma?
I'm using USB 2.0 cables btw. (unless I can charge faster with the USB 3.0 when plugged to a car charger or the wall, which I apparently won't from my research here)
While I await for responses, I will plug the charger into my voltage/amp reader and we'll see how much power is being drawn, which might give an idea as to how many ma it's charging at.
For whoever that wants to know this information, these are my findings from my meter that is able to measure how much power is being drawn (kill a watt P3)
with the stock charger and USB 2.0 cable (3.0 made no difference) the phone will charge at 900ma with the screen on. If the phone is shut off, or screen is off, it goes to 1500ma. Very steady at those.
with the SGS3 charger that I had, it's a constant 900ma whether screen is on or off... (1.0 amp charger)
now I guess I will have to see if this is the case with any 2.1 amp charger, or if it's specific to samsung's charger with snapdragon's quick charge feature. I believe only certain chargers allow use of this.
I don't know, I'm getting 1800mA by using stock wall charger with USB3 cable and 450 with USB2 cable. I know GS3 would charge at faster rate when using original Samsung wall charger and cable, which had data lines shorted, not sure if it's the same with Note3.
I don't remember for sure, but I think charging rate from computer was pretty much the same 450mA regardless of USB3 or USB2 port or cable. I remember this because I was surprised they didn't take advantage of higher power ratings with USB3, but maybe it was just my particular setup. I used application that shows charging rate, so all is with phone on, but it makes perfect sense, about 2 hours from 0 to 100% charge, if you allow some extra time for trickle charge at the end, losses and usage.
pete4k said:
I don't know, I'm getting 1800mA by using stock wall charger with USB3 cable and 450 with USB2 cable. I know GS3 would charge at faster rate when using original Samsung wall charger and cable, which had data lines shorted, not sure if it's the same with Note3.
I don't remember for sure, but I think charging rate from computer was pretty much the same 450mA regardless of USB3 or USB2 port or cable. I remember this because I was surprised they didn't take advantage of higher power ratings with USB3, but maybe it was just my particular setup. I used application that shows charging rate, so all is with phone on, but it makes perfect sense, about 2 hours from 0 to 100% charge, if you allow some extra time for trickle charge at the end, losses and usage.
Click to expand...
Click to collapse
and how did you measure this 1800mA?
razorseal said:
and how did you measure this 1800mA?
program is called galaxy charging current, you can get it in the play store.
Click to expand...
Click to collapse
You can't compare that app to a meter that shows you the actual current being drawn
Sent from my SAMSUNG-SM-N900A using Tapatalk
why not? How do you think your meter is working? Phone has similar IC. How did you come up with your numbers first of all? I thought you plug Kill a watt into outlet and it shows what the charger is using at 110v and at about 10 watts(or is it 220-240v for your location), your unit maybe at the limit of accuracy, since the amperage would be somewhere around 100mA, where your device is designed more for larger power consumption like fridge or TV running 300-1000watts and few amps. Is your unit somehow capable of measuring what the charger is outputting and if so, how?
BTW you can't get more than 900mA from PC even over USB3, thats the max limit.
I checked again: galaxy S3 wall charger is giving me 600mA, Note3 charger with USB2 cable gives me 1200mA and Note 3 charger with USB3 cable pumps out 1800mA, computer USB gives 450mA regardless of computer port, but there is something wrong with the USB3 cable that I got, is not connecting properly and I have to wiggle it to connect so maybe bad cable is the reason I don't get higher charge rate from PC USB3.
Hiya,
I'm copying my original post over from the Z3 Compact forum as there should be a fair amount of similarities between the two models regarding battery charging.
Hiya,
I' hoping this is the right section to post this in.
I don't have my Z3C yet, but I've been searching for information on charging speed, charging current etc. - and there is barely anything to be found. What seems to be consent: A full charge (0-100%) takes about three hours. But then, some people say an almost full charge (0-90%) takes much less, as charging current is greatly reduced for the last 10% to reduce stress on the battery. Sony itself also claims that a small charge (something like 0-10%) should be quite fast as well.
Then there's some speculation about QuickCharge 2.0 being used or not used, that you could use a Motorola 2.0A charger to charge it faster than with the provided 1.5A Sony charger etc., which also brings up the question which resistor values on the D+ and D- wires are necessary to toggle different charging currents. (Or I might be stupid and there's a standard for that by now, which is the same for all Qualcomm devices.)
To cut it short: I'd request those who have a Z3C to post some comments about their charging times, and at best even their charging currents. I used an app called BatteryMonitor on my Desire HD, I'm sure there's others around now that give the same information. If someone could try out different chargers and record charging current over time, maybe even with a pretty graph, it'd surely help all future discussions about chargers, docks, modifications, DIY charging issues etc.
Click to expand...
Click to collapse
So, as the same goes for the Z3: If someone can record their charging times, charging current and charger used: Go ahead and post it. Bonus points for taking a look at magnetic charging.
dragonfet said:
Hiya,
I'm copying my original post over from the Z3 Compact forum as there should be a fair amount of similarities between the two models regarding battery charging.
So, as the same goes for the Z3: If someone can record their charging times, charging current and charger used: Go ahead and post it. Bonus points for taking a look at magnetic charging.
Click to expand...
Click to collapse
A recent tear down confirms the Qualcomm chip for Quick Charge 2.0 support, so what we need now is for someone to get a compatible PSU that can 'talk' to the phone and then supply more power. That should see a huge improvement in charge time.
I am just trying to find a source for a compatible charger. So far I've only seen the Motorola Turbo Charger in the USA, and I'd be wary of buying anything made by a no-name brand at this point.
I have to assume the magnetic charging option won't be as fast, simply as there can't be a way for the PSU to know it is connected to a compatible device. Quick Charge 2.0 appears to require some sort of handshaking, or else the PSU will limit the power output, hence why I'd be wary of any chargers appearing on eBay or Amazon that claim to offer fast charging.
jonmorris said:
A recent tear down confirms the Qualcomm chip for Quick Charge 2.0 support, so what we need now is for someone to get a compatible PSU that can 'talk' to the phone and then supply more power. That should see a huge improvement in charge time.
I am just trying to find a source for a compatible charger. So far I've only seen the Motorola Turbo Charger in the USA, and I'd be wary of buying anything made by a no-name brand at this point.
I have to assume the magnetic charging option won't be as fast, simply as there can't be a way for the PSU to know it is connected to a compatible device. Quick Charge 2.0 appears to require some sort of handshaking, or else the PSU will limit the power output, hence why I'd be wary of any chargers appearing on eBay or Amazon that claim to offer fast charging.
Click to expand...
Click to collapse
I have read excellent reviews for the Blackberry Premium Charger (the one with the yellow tip), super cheap on Amazon right now. Recommended by Android Central and others for its 2A charging capability. I have used it in the past from my HTC One X days and have re ordered for my Z3. Honestly, my Z3 is charging more than fast enough with the OEM supplied charger, which may be less powerful but more optimised than another OEM's charger. The one I'd trust most if I was forced to use one would be the above model of the BB charger.
jonmorris said:
I have to assume the magnetic charging option won't be as fast, simply as there can't be a way for the PSU to know it is connected to a compatible device. Quick Charge 2.0 appears to require some sort of handshaking, or else the PSU will limit the power output, hence why I'd be wary of any chargers appearing on eBay or Amazon that claim to offer fast charging.
Click to expand...
Click to collapse
more power can either be achieved through more voltage (that could potentially be harmful if the hardware is not compatible) or more current. More current is 100% save as the charging circuit just takes what it needs, independent of the (more potent) capabilities of the charger.
As Oppo showed with its find 7 just raising the current is a viable option which works. This is also a Snapdragon 801 device.
With the 1.5A original charger and cable, using Battery Monitor Widget shows the charging rate at around 900mA to 1000mA.
So I guess Z3 is restricting to max 1A charging?
jonmorris said:
I have to assume the magnetic charging option won't be as fast, simply as there can't be a way for the PSU to know it is connected to a compatible device. Quick Charge 2.0 appears to require some sort of handshaking, or else the PSU will limit the power output, hence why I'd be wary of any chargers appearing on eBay or Amazon that claim to offer fast charging.
Click to expand...
Click to collapse
Would it be possible that the PSU simply always limits the power output? For example, the phone might try to draw 1.5A, but the PSU doesn't support it and limits at 1.0A. Then magnetic charging could work with 1.5A or even 2.0A without the need for communication over the D+ / D- pins. (And attaching the magnetic port with a USB adapter to a PC or Laptop might cause the USB Port to shut down and trigger an overcurrent warning.)
AKK03 said:
With the 1.5A original charger and cable, using Battery Monitor Widget shows the charging rate at around 900mA to 1000mA.
So I guess Z3 is restricting to max 1A charging?
Click to expand...
Click to collapse
That would make sense. Though wonder where the extra 500 mA are going, it surely can't be the phone's standby. And given a typical maximum charging current of 1.0C (C = battery capacity), it would translate into 3.1A of charging current and therefore a 3.5A power supply.
Is this current constant from 1% to about 65%?
AKK03 said:
With the 1.5A original charger and cable, using Battery Monitor Widget shows the charging rate at around 900mA to 1000mA.
So I guess Z3 is restricting to max 1A charging?
Click to expand...
Click to collapse
If there are restrictions they are most likely within the Kernel and we may be able to change them in the future with custom Kernels
dragonfet said:
That would make sense. Though wonder where the extra 500 mA are going, it surely can't be the phone's standby. And given a typical maximum charging current of 1.0C (C = battery capacity), it would translate into 3.1A of charging current and therefore a 3.5A power supply.
Is this current constant from 1% to about 65%?
Click to expand...
Click to collapse
There is some fluctuation, but is roughly around 1A.
I have test 2 different charger
from "Battery Monitor Widget Pro" logs
with EP880 (1.5A max)
show ...................... 1.1A max
with 2 Amp charger
show .....................1.5A max
maxx228 said:
I have test 2 different charger
from "Battery Monitor Widget Pro" logs
with EP880 (1.5A max)
show ...................... 1.1A max
with 2 Amp charger
show .....................1.5A max
Click to expand...
Click to collapse
Thanks for the results. I have my Z3 by now and recorded some as well.
From 0 to 68%, it charges with 1000-1100 mA, then it goes into CV (constant voltage) mode and stays there until 95%. Then the curent drops slightly. The rest of the charging curve is not usable, as it was the first full charge my handset had. And the last for now, as I have to send it back due to a gap in the frame and microphone issues.
I'll post a complete curve when I have the new one and did a few cycles. What's clear for now:
1. Charging current with the stock charger is around 1.1 A max.
2. The phone charges up to 95% with 0.5% per minute. (Stock Charger)
3. It drops to 0.125% between 95% und 100%, likely to put less strain on the battery.
It's nice to see that there's appearantly support for higher charging currents. Though we should keep in mind that a higher current also means more stress for the battery, especailly when the phone is used while charging (higher battery temperature as the CPU also adds heat).
my Z3 came with the charging dock dk48.. it is rated at 1.8a, charging is fast
I can't speak to the Z3 (yet), but my Z1s charges nearly twice as fast on the magnetic charging dock as it does through the USB connection. As a result, I can leave my screen on at full brightness while on the dock and still charge. I would *expect* similar behaviour from the Z3.
Original charger: about 1.0A - 1.1A. Result: 3h 50p - 4h for fully charged.
Magnetic charging dock or cable: 1.5-1.6A. Spend only 2h 45p
I'm tesing Xiaomi MI Power Banki 10400mAh. First test: 1.6A, much faster than original charger. A bit surprise!
http://www.mi.com/sg/mipowerbank/
Zanr Zij said:
Original charger: about 1.0A - 1.1A. Result: 3h 50p - 4h for fully charged.
Magnetic charging dock or cable: 1.5-1.6A. Spend only 2h 45p
I'm tesing Xiaomi MI Power Banki 10400mAh. First test: 1.6A, much faster than original charger. A bit surprise!
http://www.mi.com/sg/mipowerbank/
Click to expand...
Click to collapse
The original charger is rated 1.5A, actual charging on Z3 is 1.0A.
Xiaomi is rated 2.1A, so I guess is reasonable to expect 1.5A actual charging from it.
For your magnetic charging dock or cable, are you using the original charger?
With the original charger, I'm getting the same result with or without dock.
Zanr Zij said:
Original charger: about 1.0A - 1.1A. Result: 3h 50p - 4h for fully charged.
Magnetic charging dock or cable: 1.5-1.6A. Spend only 2h 45p
I'm tesing Xiaomi MI Power Banki 10400mAh. First test: 1.6A, much faster than original charger. A bit surprise!
http://www.mi.com/sg/mipowerbank/
Click to expand...
Click to collapse
where did you get the magnetic charging cable?
AKK03 said:
The original charger is rated 1.5A, actual charging on Z3 is 1.0A.
Xiaomi is rated 2.1A, so I guess is reasonable to expect 1.5A actual charging from it.
For your magnetic charging dock or cable, are you using the original charger?
With the original charger, I'm getting the same result with or without dock.
Click to expand...
Click to collapse
With Mi Power Bank, I used micro USB cable, not magnetic.
I'm using Samsung Note 3 2.0A charger. Through micro USB port, I got lower current, about 1.0-1.2A but with magnetic cable 1.5-1.6A.
---------- Post added at 11:31 AM ---------- Previous post was at 11:30 AM ----------
Shudder123 said:
where did you get the magnetic charging cable?
Click to expand...
Click to collapse
Included in my Z3 retail box
Zanr Zij said:
With Mi Power Bank, I used micro USB cable, not magnetic.
I'm using Samsung Note 3 2.0A charger. Through micro USB port, I got lower current, about 1.0-1.2A but with magnetic cable 1.5-1.6A.
---------- Post added at 11:31 AM ---------- Previous post was at 11:30 AM ----------
Included in my Z3 retail box
Click to expand...
Click to collapse
you mean the USB cable?
Shudder123 said:
you mean the USB cable?
Click to expand...
Click to collapse
My Z3 Dual retail box has 2 cables: usb and magnetic
Zanr Zij said:
My Z3 Dual retail box has 2 cables: usb and magnetic
Click to expand...
Click to collapse
where did you get yours from? mine only came with a USB cable
I have a z3 dual .. I did not notice the second cable in the box. I have to check again