Help to reprogramming of temperature data loggers - TempTale 4 USB - Hardware Hacking General

Foreigner here, please be kind =)
Hello everyone, good morning, good afternoon and good night!
Recently I have received some orders for laboratory supplies accompanied by a temperature Datalogger that performs the recording and storage of the temperature history for 11 days.
I've been researching the model and it is for single use and disposable (TempTale 4 USB - Dry Ice version by Sensitech)
I also discovered on some foreign websites that although there is software from the manufacturer to "unlock" the device for later reuse, the acquisition is not compensated due to the low value and the existence of other reusable models of the brand itself (Sensitech).
As this model came by surprise in my hands and no one has other uses for it, I decided to disassemble it and analyze its hardware. It has an Atmel controller that in my opinion could be reprogrammed to reset the programming or even unlock it for other uses.
If possible, I would like to count on the help of experts here on the forum for this. I believe I have come to the right place for this!
I leave some internal and external photos of the device for you guys
drive.google.com/drive/folders/1kON9AvEiRVNXjbIdCbus7JY8tHV3H36N?usp=sharing
It is worth mentioning that it has an interesting system that when connecting to the computer automatically generates a pdf report with all the data and graphs of the temperature record and another .ttx file that I still don't know what it is. Both are also in the drive folder for you to look at.

Hello there, your thread is kinda old by now but I am working on this myself.
Unfortunately I cannot provide you with the software for Sensitech dataloggers due to it being a bit risky, I do not want to get into legal trouble with Sensitech or getting fired for a hobby project. However even with the software you won't be able to reset one without somehow altering the chip contents. It will give you an error message that the dataloggers are meant for one time use only and cannot be reprogrammed.
The way to reset them is to manually erase the content of the ARM chip on the board, I don't know much about microchip programming but I have gotten it to work myself completely by accident. Probably by measuring each pin with an oscilloscope probe I have somehow corrupted/erased the programming on this chip. After that a red light started blinking and the word SET appeared on screen. After that I was able to reprogram them.
The TTX file is a more detailed database of the temperature logs, from which you can extract CSV files and do some sort of fancy graph displays and all that. The PDF is just for general overview.
You have a different model than the ones I get though. I have found that by shorting the Winbond chip and rebooting the device (shorting the battery connector briefly) it goes into some sort of error state. The screen will blink and every time you press Stop the actual temperature will be displayed on the screen. I do not know if your model has this too.

Is anyone still working on this? I have an interest in discussing repurposing a temp tale and would like to discuss

Related

[BUG FIX] Phantom keypress and screen shot

I've been working on fixing this issue for awhile. Here's the deal:
The problem.
The four keys at the bottom of the phone are monitored by a melfas touchkey chip (http://www.melfas.com/english/touch/sensor.asp) that connects to the main processor via an I2C bus (http://en.wikipedia.org/wiki/i2c). The melfas chip generates an interrupt whenever one of the keys is touched or released. The processor then reads the key value from this chip over the i2c bus. The problem is that the touchkey chip is located right next to the 3G antenna. When the phone is accessing the 3G network the RF energy gets transferred to the interrupt and i2c clock and data lines causing false interrupts to occur. The processor responds to the interrupt by reading the key value from the cypress chip. The symptoms occur more frequently in low signal areas because the phone outputs a higher RF level in those situations which causes more RF interference on the interrupt line.
Most of the time when a false interrupt has occurred the touchkey chip will return a value of zero for the key and the driver will recognize this as a bad key press and ignore it. Sometimes the RF interference on the i2c clock and/or data line causes a valid value to be returned and the driver reports a key press value to the application. In the case where the driver reports a ‘back’ key down, the software sees this as holding the back key down so when you press the power button you get a screen shot. The easiest way to cure this is to always press and release the back key before pushing the power button. This causes the software to see both a key down and key up event which cancels the screenshot mode.
This RFI induced touchkey interrupt happens hundreds of times per second when the phone is using 3G. It produces lots of different symptoms including applications that always seem to shut down. A wide variety of problems can be attributed to this failure. In addition, the processor spends a lot of time servicing these bogus interrupts, which take cpu time away from the other applications. This can make the phone appear to be slow or even freeze up for short periods of time. There’s a good chance that most people have experience this to some degree without realizing the root cause.
Solution one. Fix the driver.
Since this is a true hardware failure, a software solution is going to be less than perfect. After dozens of experiments rewriting the interrupt service routines in the driver I’ve settled on a combination of fixes. The first is to re-test the interrupt input line several times. In normal operation when you touch or release a button, the touchkey chip drives the interrupt line low and keeps it low until the driver reads data over the i2c interface. Since the RF interference is a sine wave and is being sampled it causes the interrupt line to go high and low at a fast rate. Sampling the line multiple times in software increases the chance of finding it in the high state. This is done both in the interrupt handler and then again in the interrupt thread. About 90% of the false interrupts are filtered out by testing the line in the handler. If the interrupt handler doesn’t find the line high after 10 samples, it masks the interrupt so that another falling edge doesn’t produce another interrupt. In testing I’ve noticed that the interrupt handler would run multiple times before the interrupt thread was even called. Once in a while, so many interrupts would get stacked up that the phone would just reboot. It was probably a stack or buffer overflow that wasn’t being handled. Remember, this interrupt would happen many hundreds of times a second. About 90% of the remaining false interrupts are filtered out by sampling this line in the thread. That leaves about 1% of the interrupts that need to be further tested. The second test is to read the data from the chip and discard anything that isn’t a valid key press value. This is easily done with a case statement. Finally, since occasionally a bogus valid value will get through, I set up a timer so that any key down event that doesn’t have a corresponding key up event within 3 seconds is canceled by calling the all_keys_up routine.
This combination all but eliminates the symptoms produced by this failure. The only draw back is that the processor still spends a considerable amount of time servicing the false interrupts. And rarely a phantom keypress does get through. In all, it’s a fairly good piece of duct tape and JB Weld.
During my experiments I used a copy of the kgb kernel. My version with the modified driver is in github at https://github.com/dmriley/kgb. If you want to try this yourself, be sure to use the ‘dev’ branch.
Solution two. Fix the hardware.
There are three signals that connect from the melfas touchkey chip to the processor. They are the two i2c lines: sdc which is the clock and sda which is the data. The third line is the interrupt. In troubleshooting this problem, I took my phone apart and put oscilloscope probes on the three lines. This allowed me to see the real cause of the problem. Since the interference is RFI (or EMI) the only real way to fix the problem is to either remove the RF or make the impedance of the signals much lower. Removing the RF is easy if you don’t need to use 3G. When the phone is using wifi (or no network connectivity at all) the problem does not exist. Also, when you are very close to a cell tower, the phone transmits at a much lower level. This lower level greatly reduces the RFI. Lowering the impedance is a little harder. I2C uses active pull down and passive pull up for the logic levels for both sda and sdc. This means that the impendence is mostly governed by the pull up resistor. This resistor value is typically upwards of 1kohm and probably as high as 3kohms (I didn’t measure it in this phone). Since the impedance only needs to be lowered for the 3G frequencies of around 800MHz, a capacitor can be added from the signal source to signal ground. At 800MHZ a 100 pf cap is about 2 ohms (1/ 2*pi*f*c). That’s a couple of orders of magnitude lower than the pull up resistor alone, and much too low for the RF signal to induce any significant voltage on the line. This value is also low enough not to interfere with the signal rise and fall times for the interrupt line. In the case of the interrupt line, the melfas chip drives the signal low and keeps it low until the interrupt is serviced. Discharging a 100pf cap with a 2mA driver takes only microseconds. This much delay is not noticeable when touching the key and is much less than the amount of time that the processor takes to service the interrupt.
Adding the cap to the interrupt line eliminates false interrupts. A chance does exist that a valid key event during 3G access could cause an incorrect key value to be returned due to RFI on the clock and data lines. The i2c protocol is designed to compensate for capacitive loading on the lines. Although it would cause the clock period to be stretched out significantly it would still only take milliseconds to read the key data from the chip. The difference would be imperceptible. To date I have only added the cap to the interrupt line and have yet to experience an invalid key press.
I’ll post pictures of cap mod.
Summary.
Most people will be satisfied using the software fix. I think that a couple of the kernel devs are incorporating some or most of the driver mods outlined in this document. Both comradesven (kgb dev) and ssewk2x aka Efpophis (glitch dev) were involved in the test and debug process. Much appreciation is given to both of them for the help that they gave me and for allowing me to use and hack up their code on github. Efpophis saved me hours of searching through code. Without their help, I’d still be unable to build a kernel.
UPDATE:30 Mar 2012
The phone had been working fine since the mod. I hadn't seen a screen capture or any of the other symptoms. Then, a couple of nights ago, while I running maps on 3G (a data intensive app) the touchkey backlights started flashing rapidly like the phone was having a little seizure. And then it happened, the voice search popped up. A couple of debug kernels later I've come to the conclusion (and I'm never wrong) that the clock line (SCL) going to the melfas chip was being toggled by the same RF interference that was causing the false interrupts. A random clock along with random data was causing the chip to turn the backlights on and off as well as generate a false interrupt. I was able to reliably duplicate the problem in a couple of really low signal level areas (not hard to find when you live out in the boonies).
I tore the phone apart (again) today and added a 100pf cap to the scl line right next to the chip. I also added another cap in parallel with the 100pf on the interrupt line. I spent about 1/2 hour tonight running 3G data apps in the same location where the problem first appeared. So far, no problems and none of the debug messages have shown up on dmesg.
If anyone wants pics of the added cap I'll open it back up, no problem, otherwise if you look at this photo you can see which pin is scl (although I incorrectly labeled it SDC in the photo). http://forum.xda-developers.com/attachment.php?attachmentid=953824&d=1332117055
If anyone tries these mods I'd be real interested in your results.
Here are some pictures of the cap mod:
this is the open phone showing where the melfas touchkey circuit is:
View attachment 951774
Awesome, thanks for doing this for all of us. Phantom key press is really annoying
Sent from my SCH-I500 using XDA App
the cap. yeah, that's a normal size pen to show scale
View attachment 951812
on the board
View attachment 951821
with notes
View attachment 951820
the antenna problem
View attachment 951822
close up showing touckey circuit. micro sd card for scale
View attachment 951834
my finger
View attachment 951836
back off
View attachment 951838
another view
View attachment 951837
BTW, I took these pictures with my son's fascinate
Wow, we're lucky to have someone as capable as yourself figure out this annoying issue! I've kinda kept up on your work, but seeing this breakdown and the photos is helpful in understanding the root cause of the problem. I do wonder sometimes how Samsung missed this issue in their testing, but at least we have custom kernels that implement your fixes and dramatically reduce the phantom presses!
Uuuhm...You're an awesome human being. Holy crap. -_-
That's some amazing work, thanks!
k_nivesout said:
.... I do wonder sometimes how Samsung missed this issue in their testing, but at least we have custom kernels that implement your fixes and dramatically reduce the phantom presses!
Click to expand...
Click to collapse
Yeah, it's crying shame that Samy couldn't fork over the extra penny to keep this problem from happening in the first place.
sendan said:
Uuuhm...You're an awesome human being. Holy crap. -_-
That's some amazing work, thanks!
Click to expand...
Click to collapse
wasn't just me. had help from other members here. I didn't even know where to start looking when I first started. It's so cool that people are willing to do the level of work that the devs here do without expecting anything back.
electric bill said:
wasn't just me. had help from other members here. I didn't even know where to start looking when I first started. It's so cool that people are willing to do the level of work that the devs here do without expecting anything back.
Click to expand...
Click to collapse
Thanks so much for all the work, and the detail in your post. It is amazing the work everybody does here and the knowledge you pass on to us.
I do have a few questions
Would you mind sharing what kind off iron you used? is that the most bottom line on the board you soldered to? If so, did you have to scratch it or something first? Is it the farthest left line on the chip that was used? Do they make caps that size with leads coming of the 2 sides, and if so would that be a easier mod? Is there a positive and negative side to that capacitor?
I'm really thinking about doing this, if i decide to would you mind sending me 5 of your extra caps for a $10 donation?
Sent from my SCH-I500 using xda premium
Ditto on the $10.00
neh4pres said:
Thanks so much for all the work, and the detail in your post. It is amazing the work everybody does here and the knowledge you pass on to us.
I do have a few questions
Would you mind sharing what kind off iron you used? is that the most bottom line on the board you soldered to? If so, did you have to scratch it or something first? Is it the farthest left line on the chip that was used? Do they make caps that size with leads coming of the 2 sides, and if so would that be a easier mod? Is there a positive and negative side to that capacitor?
I'm really thinking about doing this, if i decide to would you mind sending me 5 of your extra caps for a $10 donation?
Sent from my SCH-I500 using xda premium
Click to expand...
Click to collapse
I did the mod at my workplace under a microscope. I used a metcal (http://www.okinternational.com/product_soldering/mx500) soldering iron but you could use just about any low wattage iron with a really fine tip.
There's four pins on each side of the melfas chip. One end of the cap is soldered right to the interrupt pin which is the closest to the corner. the other end is connected to the ground side of C2 via a solder bridge.
View attachment 953824
I doubt that they make caps that small with leads on them. You could look. It's not hard to make the solder bridge. Remember the scale that were talking about here. That cap is 0.06 inches long by 0.03 inches wide. I wouldn't try to scratch the solder resist from the board because it's a flex circuit on top. Also, the cap is not polarized.
I bought a hundred of these caps for less than $6 including shipping. I'd feel terrible charging someone $10 for five. If you pm me your address I'll stick a couple in an envelope and send them. If you want to give away ten bucks, donate it to a charity like destiny rescue or UMCOR (http://new.gbgm-umc.org/umcor/about/financialinformation/).
Disclaimer:I've been working with parts this size for years and am pretty good at soldering. You risk dorking up your phone if you don't do this correctly. Only attempt if you are skilled at soldering. All information is presented "as is" and without warranty for fitness or use. Your mileage may vary. Void where prohibited, taxed or licensed.
What is the easiest way to implement the band-aid software fix?
I am on CSpire so there are not many proven custom roms out there.
IamUmpire57 said:
What is the easiest way to implement the band-aid software fix?
I am on CSpire so there are not many proven custom roms out there.
Click to expand...
Click to collapse
The fix is in the kernel. I used the KGB kernel as the source for my build. You can download it from github and build your own. If you're running all stock (rom & kernel) you can mod the stock kernel.
I'm really not the expert here on choices. Maybe someone else could chime in.
Too tiny to solder so band-aid?
Excellent research, fix and documentation. I was going to follow the fix, but, when I finally got the phone disassembled, I saw that the bits were much too small for me to solder. And I'm an ex-electronics guy who's worked on surface mount stuff before, so I doubt amateurs will have much luck, either.
So the problem is that RFI is hopping onto the I2C and interrupt lines... Could we just block the RFI? Sure. A grounded piece of aluminum foil which covered the whole Melfus+lines area should do that. So I tried that. Worked great for the soft keys, but, for reasons not apparent to me, my phone would no longer do 3G (stuck in 1X). Perhaps because the big old piece of grounded foil in the middle of the 3G antenna soaked up too much signal?
How about not grounding the Aluminum foil? It wouldn't be tied to ground, so the potential of the Alu foil would wobble, but it might prevent enough RFI from reaching the I2C and interrupt lines.
I opened the phone back up and squished the Alu foil a bit so that it just covered the Melfus chip and the lines heading to the left, and so that it didn't touch what-I-think-is the ground plane right at the upper edge of the PCB. Now, the piece of Alu foil was a rectangle about 6mm wide and 3mm tall. Seems to prevent softkey misfires and my phone seems more responsive. Assuming the results hold, this is a 5 minute fix for the issue and it doesn't require anything more than a tiny screwdriver, a spot of aluminum foil and a moderately steady hand. Wish me luck!
CoffeeDregs said:
Excellent research, fix and documentation. I was going to follow the fix, but, when I finally got the phone disassembled, I saw that the bits were much too small for me to solder. And I'm an ex-electronics guy who's worked on surface mount stuff before, so I doubt amateurs will have much luck, either.
So the problem is that RFI is hopping onto the I2C and interrupt lines... Could we just block the RFI? Sure. A grounded piece of aluminum foil which covered the whole Melfus+lines area should do that. So I tried that. Worked great for the soft keys, but, for reasons not apparent to me, my phone would no longer do 3G (stuck in 1X). Perhaps because the big old piece of grounded foil in the middle of the 3G antenna soaked up too much signal?
How about not grounding the Aluminum foil? It wouldn't be tied to ground, so the potential of the Alu foil would wobble, but it might prevent enough RFI from reaching the I2C and interrupt lines.
I opened the phone back up and squished the Alu foil a bit so that it just covered the Melfus chip and the lines heading to the left, and so that it didn't touch what-I-think-is the ground plane right at the upper edge of the PCB. Now, the piece of Alu foil was a rectangle about 6mm wide and 3mm tall. Seems to prevent softkey misfires and my phone seems more responsive. Assuming the results hold, this is a 5 minute fix for the issue and it doesn't require anything more than a tiny screwdriver, a spot of aluminum foil and a moderately steady hand. Wish me luck!
Click to expand...
Click to collapse
That's great work. I tried that initially with some foil tape over the whole melfas chip without success. This was all documented in the github problem log but it got deleted when the ticket was closed out. In my basement where I was doing my testing, the signal strength is very low so it's a worst case scenario. Maybe the shield will work better if it's shaped just right. I'm not an RF guy so my shield was just a guess. Share some pics with us if you find a solid solution. The shield would be much easier to implement.
electric bill said:
I tried that initially with some foil tape over the whole melfas chip without success.
Click to expand...
Click to collapse
What was not successful about it? You still had phantom keypresses or you lost 3G?
Also, how did you ground the foil? I grounded it against what I thought was a ground plane. And I covered the entire L-shaped assembly (Melfas, lines and all).
[Stating the obvious...:] The idea of covering the Melfas chip and lines with foil assumes that the RFI is getting to the lines from above the chip+lines. The foil wouldn't do anything were the RFI hopping over from elsewhere. But AFAICT the top layer of the PCB is a ground plan and the signal lines head down into buried layers directly from the connector, so I'm not sure how else RFI could get the I2C lines except from in the module...
My un-grounded foil seems to be an improvement, but not a fix, so I might try grounded-foil again and try to figure out why it killed my 3G.
Good to hear that you have a microscope; I still have 20/20 vision as a 40yo, but that's a tiny little area!
I gotta say that I am wildly disappointed in Samsung. If a few electronics-savvy folks polking around the interwebs can find root cause and propose multiple fixes, it's shocking that Samsung won't acknowledge it, much less fix it. I'm due a phone upgrade and I'd love to get an SGS III, but I really don't trust Samsung.
CoffeeDregs said:
What was not successful about it? You still had phantom keypresses or you lost 3G?
Also, how did you ground the foil? I grounded it against what I thought was a ground plane. And I covered the entire L-shaped assembly (Melfas, lines and all).
[Stating the obvious...:] The idea of covering the Melfas chip and lines with foil assumes that the RFI is getting to the lines from above the chip+lines. The foil wouldn't do anything were the RFI hopping over from elsewhere. But AFAICT the top layer of the PCB is a ground plan and the signal lines head down into buried layers directly from the connector, so I'm not sure how else RFI could get the I2C lines except from in the module...
My un-grounded foil seems to be an improvement, but not a fix, so I might try grounded-foil again and try to figure out why it killed my 3G.
Good to hear that you have a microscope; I still have 20/20 vision as a 40yo, but that's a tiny little area!
I gotta say that I am wildly disappointed in Samsung. If a few electronics-savvy folks polking around the interwebs can find root cause and propose multiple fixes, it's shocking that Samsung won't acknowledge it, much less fix it. I'm due a phone upgrade and I'd love to get an SGS III, but I really don't trust Samsung.
Click to expand...
Click to collapse
Yeah, I used what I thought was a ground pad and covered pretty much everything on that little flex board that has the chip on it. It didn't stop the problem. Also, I had a bunch of dmesg stuff in the driver so I could see every time that there was a "missfire" vs just seeing the actual symptoms. A shield could theoretically fix the problem, I'm just not a RF engineer so I went with what I know. With the microscope, it's pretty easy to add the caps. Without, it'd be kinda hard. It probably only took me 20 minutes or so to do the last one I did. The good news it, the cap fix does the trick 100%. We've been running it on three phones without a problem for a few months now.
I totally agree on Samsung's failure. That design defect should have been caught pretty early in development. Maybe these guys have never heard of a Peer Review . It's even sadder if they knew it might be a problem but decided to risk it to save 1/2 cent per phone.
I understand the corporate mentality of denying a problem exists (iphone signal loss is a good example). If they admit it, then they have to fix it and that would be very costly. I'm sure when they started to have a problem they did a cost analysis and decided that losing N number of customers was cheaper than actually fixing all the bad phones.
What made it even worse was trying to find info on the phone design. Samsung was completely unresponsive when I contacted them to get data sheets on the CPU and other info on the phone. It's as if they didn't want me to solve the problem. Come to think of it, they probably didn't want me to. Solving it verifies that the problem exists and isn't just user error.
Anyway, now with my phone fixed and the excellent AOKP ROM and Glitch kernel, I love my fassy.
electric bill said:
Yeah, I used what I thought was a ground pad and covered pretty much everything on that little flex board that has the chip on it. It didn't stop the problem. Also, I had a bunch of dmesg stuff in the driver so I could see every time that there was a "missfire" vs just seeing the actual symptoms. A shield could theoretically fix the problem, I'm just not a RF engineer so I went with what I know. With the microscope, it's pretty easy to add the caps. Without, it'd be kinda hard. It probably only took me 20 minutes or so to do the last one I did. The good news it, the cap fix does the trick 100%. We've been running it on three phones without a problem for a few months now.
I totally agree on Samsung's failure. That design defect should have been caught pretty early in development. Maybe these guys have never heard of a Peer Review . It's even sadder if they knew it might be a problem but decided to risk it to save 1/2 cent per phone.
I understand the corporate mentality of denying a problem exists (iphone signal loss is a good example). If they admit it, then they have to fix it and that would be very costly. I'm sure when they started to have a problem they did a cost analysis and decided that losing N number of customers was cheaper than actually fixing all the bad phones.
What made it even worse was trying to find info on the phone design. Samsung was completely unresponsive when I contacted them to get data sheets on the CPU and other info on the phone. It's as if they didn't want me to solve the problem. Come to think of it, they probably didn't want me to. Solving it verifies that the problem exists and isn't just user error.
Anyway, now with my phone fixed and the excellent AOKP ROM and Glitch kernel, I love my fassy.
Click to expand...
Click to collapse
Yeah: dmesg would be lots better!
My foil status: decent. I'm getting a lot less buzzing, but I still do get **some** in low signal areas (my bedroom). So I'm happier.
Samsung's response: I'm not at all surprised. I used to be an FAE for Cirrus Logic and worked a lot with ARM processors (back in 2000-2003). I got ahold of some of Samsung's datasheets on their ARM processors and was staggered: the datasheet was about 4 pages long and was full of errors, inaccuracies or glossings-over. Our datasheets were 40 pages long and we had 200 page programming manuals available on the web. You got no love from Samsung unless you were looking to buy 5M chips.
Anyways, thanks for you research and help!
I'll be giving that kernel a shot!
Second cap
I finally got around to mod'ing our last phone. Actually, I was finally able to pry it from my teen's hands long enough to do the work. I think she sat home all afternoon and twitched.
Anyway, here's a pic of the two caps. One is on the interrupt line and the other is on the clock (or scl) line. I melted the insulation from a piece of real fine magnet wire to connect between the clock pin and the second cap. The other end of the second cap is just solder bridged to the same ground as the first cap.

jtag, firmware hacking, dumps, homebrew

I'm a pretty smart guy and I pick up on things quickly, but how people can take a consumer device (xbox, ps3, iphone, router, photoframe, digital camera, etc) and figure out wires and resistors that appear random in many cases to build a jtag connection and then magically dump the firmware and develop their own tweaks or custom firmware just escapes me. I've built jtag connections before, modified or replaced countless firmwares, but every time someone else already did the leg work and supplied a step by step with either pictures or a video. You have guys like geohot who hacked the iphone at like age 19 and then the ps3 shortly after.
I have an aluratek photo frame and I all I want it to do is automatically start the slideshow when the frame is turned on. Something seemingly so simple yet I wouldnt even know where to begin. I imagine it has a feature to upgrade the firmware either by usb or sd card. But I would first need a copy of the OWF and then I would have to know what to change to enable the feature. Maybe it has a jtag connection, but which wires go where I could only guess. I dont see how or where people learn this kind of stuff. It's definitely more then just a google search,
1: about jtag pin :
finding Jtag pin is easy check what cpu inside your hardware and serach shematique now 90% of cpu schema can get from china books, than you need just trace lines to get good soldering point
2: about hacking
after reading flash use any disassembler, ida is very good and with same skill you can reverse what you want

[Q] Device diagnostics (benchmark/stress test)

Hi guys!
I'm starting a company in Brazil similar to Square Trade and Asurion in the US. So, before a user signs up to one of our protection plans, we need to remotely verify whether the device is fully functional. We already have and app that does part of that (the user takes a photo, press some buttons and does some other activities so we can verify the device).
However, there's still some terrain to cover. I was thinking about a stress test that would make the device freeze/reboot when the processor/board is faulty (like these devices do when people try to use heavy apps/games), some network tests (wifi and 3g/4g) and battery tests (Android already reports some stuff like health and temperature but I think these are not reliable). Do you guys know about some way to do that? I searched for an open source benchmark engine to no avail, so the next step was to ask here given you guys are always making awesome software/tweaks.
Any help is appreciated.

Crushed the back of my Nexus 4, looking for troubleshooting assistance

Hi,
I accidentally crushed my photo between a seat and a table on a train. (htp://imgur.com/Q1RUsEk) This is what it looks like after it was crushed.
Immediately after it was crushed, I noticed the phone network icon was empty. I turned off the phone and it has not been possible to boot back into the home screen since then.
I attached the phone to my computer and used ADB to get (htp://pastebin.com/H85Xq2U4) the last_kmsg, (htp://pastebin.com/NArZYWSZ) logcatouput, and (htp://pastebin.de/124812) bugreport output.
I'm not an expert at debugging problems with phone hardware but it looks like there is a problem with the audio subsystem in logcatoutput.
Are there any reasonable steps I can take in trying to resurrect my phone?
- votadini_
(Sorry for the "broken" links, I had to edit the addresses to make this post due to it being my first post.)
Bumping in the hope that this can receive some attention.
repair/replace
votadini_ said:
Bumping in the hope that this can receive some attention.
Click to expand...
Click to collapse
According to your log description it would seem that there is physical damage to the system board. The only option would be to do an inspection of the phone. This will require dis-assembly and that does need some skill, although there are several threads here on XDA that might help.
Determining the actual board damage would require some knowledge of electronics.
I would suggest that you look into replacing the unit. With the Nexus 4 you might be able to find a used unit on ebay or on the Swappa forum here on XDA.
Your sign-on doesn't indicate a location, so you may or may not be able to access/use these sites. At any rate you are looking at some pricey repairs, if such repairs are even possible.
good luck.

Question Question regarding refreshing a corporate laptop to remove requirement to login with corporate email on startup screen

I'm totally stuck. I have a work laptop that requires a corporate email to login to the laptop. I now want to use the laptop for my personal use and remove ALL corporate restrictions etc.
I have done everything I could think of (including a complete format, removing the battery CMOS and regular battery, and messing with the BIOS and other preboot configurations), but nothing works! Eventually, the computer goes back to the original windows startup screen requiring a corporate email to login.
It's almost as if there is some sort of hardware or hard coded programing that ensures the computer uses a corporate email to gain access to the laptop.
I almost feel like even if I buy a new HD and replace it, the problem will still exist.
Can anyone please provide some insight?
Is a Lenovo Carbon X1
Thank you....
You already answered your own question unfortunately my friend.
Hard-coded into the CMOS.
Google "short circuit SDA & SCL pins on security chip" for your EXACT make and model.
I had success with a ThinkPad p41 recently.
Failing that, you WILL have to talk to the sys admin from your job, as they have the unbinding protocol for every PC bound to their network.
That kinda security is EXTREMELY difficult, usually impossible, to circumvent without the unbinding protocol.
Best if luck, and post back if you are or are not successful, or have more questions.
Promise I'll answer WAY faster than 2 weeks next time, ok??
Oh, and buying a hard drive definitely won't help! Lol! Because again, it's hard-coded into a security chip right on the motherboard. A chip that contains non-volatile memory, meaning even if you remove the battery it's still there!
That's the reason the only POSSIBLE workaround (it's a hit or miss kinda thing...) without the unbinding protocol is shorting most two pins out.
Now I stated in bold letters EXACTLY your make and model, because not just Lenovo, but most companies tend to move those pins around on the security chip, from model to model, year to year, ON PURPOSE, because if you get the wrong ones The security chip will release a puff of the stinky magic smoke, and your motherboard is finished.
Just take your time you'll be okay, so long as you didn't drink a pot of coffee beforehand! Lol!

Categories

Resources