How cable length and chargers affect charge rate - Hardware Hacking General

I recently purchased a handful of Monoprice micro USB cables in 3 different lengths. I thought it would be interesting to test the different cables with two different chargers and share the results.
Test Equipment:
Load: Samsung Galaxy Note 2, Custom 4.3 ROM (Carbon), battery @60%
Measuring tool: Charge Doctor (USB voltage and amp meter)
Stuff to test:
Cables: 12", 36" and 72" Monoprice micro USB cables
Charger 1: Samsung 2.0A USB charger (Stock Note 2)
Charger 2: Asus 1.35A USB Charger (Stock Nexus 7, 2013)
Assumption:
Each of the Monoprice USB cables are made with the same gage wire, visually they look the same.
Method:
Phone turned on, camera app loaded, attached the test USB cable photographed the results on the amp meter. I tested each of the 3 cables the same way and repeated the tests with the 2nd charger. Did it all within 10 minutes so that the amount of charge on the phone didn't change significantly.
Results: (See attachments)
Analysis:
- The Asus charger, even though it is capable of putting out 1.35A and even though the phone is capable of accepting at least 1.0A (demonstrated with the Samsung charger), it could only deliver .73A
- The Asus charger seemed to max out at .73A as the 12" and 36" cables had the same results
- The graph indicates the Samsung charger may be able to do better with an even shorter cable
Conclusions:
1) The shorter the cable the faster the charge, but there's a limit
2) The higher amps the charger is capable of, the faster the charge, there must be a limit but I only had 2 chargers to test
3) Duh!

Awesome data. As expected, there is a difference between the current rating on the charger, max current draw on the phone, and actual use, but I didn't expect it to be so much.
I'm curious how much my charger setup gets and concerned that if I did get up above 1A I might overheat my phone. Next test is battery temperature after a few minutes of charging at various currents.
lbloo said:
Analysis:
- The Asus charger, even though it is capable of putting out 1.35A and even though the phone is capable of accepting at least 1.0A (demonstrated with the Samsung charger), it could only deliver .73A
- The Asus charger seemed to max out at .73A as the 12" and 36" cables had the same results
- The graph indicates the Samsung charger may be able to do better with an even shorter cable
Click to expand...
Click to collapse

Scrawson said:
Awesome data. As expected, there is a difference between the current rating on the charger, max current draw on the phone, and actual use, but I didn't expect it to be so much.
I'm curious how much my charger setup gets and concerned that if I did get up above 1A I might overheat my phone. Next test is battery temperature after a few minutes of charging at various currents.
Click to expand...
Click to collapse
Good idea, I even have an IR instant read thermometer, but it'll take more time to test. To give the battery time to heat up I'd assume I'd have to wait at least 5 minutes, then I'd have to let it rest to get back to room temperature, that might take even longer. If I get ambitious I'll do it.

very interesting test....

Easy answer.
It does not.
(unless you have a cable so long, the voltage drop over the cable brings the voltage below 4.75V)

buster_friendly said:
Easy answer.
It does not.
(unless you have a cable so long, the voltage drop over the cable brings the voltage below 4.75V)
Click to expand...
Click to collapse
The tests I did certainly seem to indicate cable length does affect charge rate.

The wire gauge plays a part. Larger and longer should be about the same as smaller and shorter.
But at 5 volt and low amps. It would be hard to measure.
IMHO.
Sent from my XT897 using XDA Premium 4 mobile app

Scrawson said:
Awesome data. As expected, there is a difference between the current rating on the charger, max current draw on the phone, and actual use, but I didn't expect it to be so much.
I'm curious how much my charger setup gets and concerned that if I did get up above 1A I might overheat my phone. Next test is battery temperature after a few minutes of charging at various currents.
Click to expand...
Click to collapse
The source, wiring and connections may limit the current, but so will the phone: don't worry about using a cable shorter than the average mosquito
With most devices you can actually choose between some preset limits (or freely input one) through sysfs...

Basically if u charge with usb cable......it will take more times....

So what amperage do I need to charge a N7 with a 50 foot cable with 4 22 gauge conductors??

hi there. although this thread is old. id like to share my experience on this matter. So i bought a fast charger brand samsung S6. it comes with its own cable. so one day the cable broke so i modified it to be longer. Im using a zenfone 6. the samsung charger blok support up to 2.1A. So the cable now is 5 feet. before i charge my phone from 0% to 100% takes 2.5 hours to fill up. now after enhancing the cable length my phone took 6 hour to fill up from 0% to 100%.
Then i bought a Hp cable that is just around 7cm in length charged my phone and supprisingly it only took 2 hrs to charge my phone from 0% to 100%.. Length does matter LOL!!!
Just sharing, i know its not even a high tech stuff. Am just reviving an old thread thats all.. cheers.

Yes because the flow of current
sent from IT Heaven
---------- Post added at 07:15 PM ---------- Previous post was at 07:15 PM ----------
Becaues the flow of current
sent from IT Heaven

Related

Question about the 5.3v charger

I don't know much about voltage and stuff, but with the 5.3v charger, I assume it's okay to use a 5v to charge the Note 3, it just might be a bit slower, correct?
Now what about using the 5.3v charger on the iPad Air? I can't find any info on its charger, or online, of what voltage it uses. will the 5.3v be too much for it or anything?
guttertrash said:
I don't know much about voltage and stuff, but with the 5.3v charger, I assume it's okay to use a 5v to charge the Note 3, it just might be a bit slower, correct?
Now what about using the 5.3v charger on the iPad Air? I can't find any info on its charger, or online, of what voltage it uses. will the 5.3v be too much for it or anything?
Click to expand...
Click to collapse
It's perfectly fine to use 5v, that's standard. The voltage the wall adapter puts out is not what will determine your charge speed, its the amperage your device draws - which I believe is capped at 1800 mah for the note 3. It doesn't matter what the amperage is (it can be higher), but the note 3 will only draw 1800 mah max and lower if the source is lower. When it comes to the 5.3v charger, there's a bit of mixed information from what I've gathered. Plenty of people have used it with no problems considering .3v is a fairly small difference, but there will be some that tell you otherwise. I personally avoid 5.3v just because I have plenty of alternative chargers.
If the source is lower, it will increase the time it takes to charge. But 5.3 volts as an output will actually drop to 5 once it is loaded by your device. Just like 5 drops to about 4.7 when loaded by a device. The unloaded output of a charger is always higher than when it is connected.
It's the device that determines the amount of charge drawn, the numbers on the charger are just the max-charge it can provide. (Think of it like a car. Your engine can go up to 200Kph, but the actual speed is determined by how much you tell it to give you.)
I charge my Note 3 with my 15V Asus TF700 charger. It still only charges at the max the Note 3 can draw.
Essentially a 15V charger can safely provide the 5V, but a 5V charger can never provide the charge for a device which requires 15V.
Besides, a USB2.0 cable can't go over 5Volt anyway, so your iPad is safe.
ShadowLea said:
It's the device that determines the amount of charge drawn, the numbers on the charger are just the max-charge it can provide. (Think of it like a car. Your engine can go up to 200Kph, but the actual speed is determined by how much you tell it to give you.)
I charge my Note 3 with my 15V Asus TF700 charger. It still only charges at the max the Note 3 can draw.
Essentially a 15V charger can safely provide the 5V, but a 5V charger can never provide the charge for a device which requires 15V.
Besides, a USB2.0 cable can't go over 5Volt anyway, so your iPad is safe.
Click to expand...
Click to collapse
Now I'm not trying to be rude or anything, but I think you have a few facts astray here. If you can prove me wrong I'll be happy to learn since it has been awhile since I took circuits. First off your right about the device being a big factor in the rate of charge, in fact technically the charger is in the device, the wall adapter is just the source. The source will force a certain voltage, i.e. 5v or 15v, and can provide up to a certain current (amperes). The charger in the device then determines how much of this current to draw.
With all that being said, the reason you can use your asus transformer charger is because it only forces 5v unless the transformer is plugged in at which point it kicks it up to 15v. So your not actually plugging a 15v source into your n3, if it were possible you'd be on thin ice. Also, I'm pretty sure you'd be able to charge your asus via say the note 3 charger (really slow though), probably not while its turned on, but turn it off leave it plugged in for a few hours and you should see a change.
A USB cable is just a wire, if you put 5.3V on it then your device receives 5.3V (minus voldage drop due to the resistance of the cable but that's negligible unless you're using a cheap thin cable). That said, 5.3V should be within tolerance for pretty much every USB charging device out there including the iPad (which I think uses a 5.3V charger itself).
Sent from my SM-N900T using xda app-developers app
Cool, good to know I wont fry either device. Thanks for all the help
Solarenemy68 said:
If the source is lower, it will increase the time it takes to charge. But 5.3 volts as an output will actually drop to 5 once it is loaded by your device. Just like 5 drops to about 4.7 when loaded by a device. The unloaded output of a charger is always higher than when it is connected.
Click to expand...
Click to collapse
Galaxy Note 3 have digital charger. so, I don't think undervolting is the case
Sent from Note 3
MILJANN said:
Galaxy Note 3 have digital charger. so, I don't think undervolting is the case
Sent from Note 3
Click to expand...
Click to collapse
It's not undervoltage. The resistance "R" of the USB cable is fixed (varies from cable to cable, but is constant for any single cable), so as the current load "I" increases the voltage "V" lost across the cable also increases, according to V = I*R.
Given a 5v source, loaded to 1800 mA, you would expect to see 4.7v at the phone's end of the USB cable. The resistance of the USB cable itself comes out to around 0.1666666 Ohms in that scenario, which is a perfectly reasonable value for the gauge wire used in those cords.
CalcProgrammer1 said:
A USB cable is just a wire, if you put 5.3V on it then your device receives 5.3V (minus voldage drop due to the resistance of the cable but that's negligible unless you're using a cheap thin cable).
Click to expand...
Click to collapse
Or using a long cable. With my (S5) 5.3V charger, i can finally use those 3M/10ft cables, which is really convenient for me
pizzaman79 said:
Or using a long cable. With my (S5) 5.3V charger, i can finally use those 3M/10ft cables, which is really convenient for me
Click to expand...
Click to collapse
In lieu of using higher voltage chargers to use with long cables, you can also use chargers that provide more current @ 5V or, of course, lower resistance cables.
I'm afraid not. The voltage will drop too far below 5.0V, the device will not accept the offered power, no matter how high the charging current. That's both based on physics and personal experience. Resistance in cables is an issue at 10 metres, even those with high gauge copper cores.
Edit: Delete.
pizzaman79 said:
I'm afraid not. The voltage will drop too far below 5.0V, the device will not accept the offered power, no matter how high the charging current. That's both based on physics and personal experience. Resistance in cables is an issue at 10 metres, even those with high gauge copper cores.
Click to expand...
Click to collapse
You are absolutely correct, however that isn't exactly what I was trying to share. I was trying to share a solution to situations where the charger cannot keep up and thus the voltage sags. I did not expect a 10metre situation. The longest I have is 5m. On my 5 metre cable, I don't notice any appreciable voltage drop from any of my chargers, so I generally consider it negligible. How much do you drop across 10 metres and at how many amps?
On a side note, I think the phone has some kind of safety when it comes to voltages. I just plugged in my 5.3V charger from my s5 into the s3 and it seemed to work fine. However, I also recently, and I only just realised this, plugged in a 7.2V supply to my S3 and though it did not charge, nothing bad seemed to happen. It was an off brand 5V USB Charger and when it died, it cranked up the voltage.
fusionstream said:
You are absolutely correct, however that isn't exactly what I was trying to share. I was trying to share a solution to situations where the charger cannot keep up and thus the voltage sags. I did not expect a 10metre situation. The longest I have is 5m. On my 5 metre cable, I don't notice any appreciable voltage drop from any of my chargers, so I generally consider it negligible. How much do you drop across 10 metres and at how many amps?
On a side note, I think the phone has some kind of safety when it comes to voltages. I just plugged in my 5.3V charger from my s5 into the s3 and it seemed to work fine. However, I also recently, and I only just realised this, plugged in a 7.2V supply to my S3 and though it did not charge, nothing bad seemed to happen. It was an off brand 5V USB Charger and when it died, it cranked up the voltage.
Click to expand...
Click to collapse
The voltage drop is dependant on gauge, copper quality and length. I never measured it at both ends but i estimate 0.3-0.5 volt based on what chargers do and don't charge what phones at 10ft. Note that i mixed up ft and metres lol, my cables are 3m. At that length voltage drop is an issue for me.
7v would perhaps be fine for a 10m cable I wish we knew the tolerance range of what voltages (at the usb in) common smartphones accept.
I think the reason the galaxy tab S tablets have a 5.3volt charger is to compensate a bigger voltage drop through the longer charging cable provided.
The voltage must be the correct voltage or near to it. I think from what others have said 5.3 is near enough to 5.0Volts.
F 0.95

Z3 Battery Charging Thread

Hiya,
I'm copying my original post over from the Z3 Compact forum as there should be a fair amount of similarities between the two models regarding battery charging.
Hiya,
I' hoping this is the right section to post this in.
I don't have my Z3C yet, but I've been searching for information on charging speed, charging current etc. - and there is barely anything to be found. What seems to be consent: A full charge (0-100%) takes about three hours. But then, some people say an almost full charge (0-90%) takes much less, as charging current is greatly reduced for the last 10% to reduce stress on the battery. Sony itself also claims that a small charge (something like 0-10%) should be quite fast as well.
Then there's some speculation about QuickCharge 2.0 being used or not used, that you could use a Motorola 2.0A charger to charge it faster than with the provided 1.5A Sony charger etc., which also brings up the question which resistor values on the D+ and D- wires are necessary to toggle different charging currents. (Or I might be stupid and there's a standard for that by now, which is the same for all Qualcomm devices.)
To cut it short: I'd request those who have a Z3C to post some comments about their charging times, and at best even their charging currents. I used an app called BatteryMonitor on my Desire HD, I'm sure there's others around now that give the same information. If someone could try out different chargers and record charging current over time, maybe even with a pretty graph, it'd surely help all future discussions about chargers, docks, modifications, DIY charging issues etc.
Click to expand...
Click to collapse
So, as the same goes for the Z3: If someone can record their charging times, charging current and charger used: Go ahead and post it. Bonus points for taking a look at magnetic charging.
dragonfet said:
Hiya,
I'm copying my original post over from the Z3 Compact forum as there should be a fair amount of similarities between the two models regarding battery charging.
So, as the same goes for the Z3: If someone can record their charging times, charging current and charger used: Go ahead and post it. Bonus points for taking a look at magnetic charging.
Click to expand...
Click to collapse
A recent tear down confirms the Qualcomm chip for Quick Charge 2.0 support, so what we need now is for someone to get a compatible PSU that can 'talk' to the phone and then supply more power. That should see a huge improvement in charge time.
I am just trying to find a source for a compatible charger. So far I've only seen the Motorola Turbo Charger in the USA, and I'd be wary of buying anything made by a no-name brand at this point.
I have to assume the magnetic charging option won't be as fast, simply as there can't be a way for the PSU to know it is connected to a compatible device. Quick Charge 2.0 appears to require some sort of handshaking, or else the PSU will limit the power output, hence why I'd be wary of any chargers appearing on eBay or Amazon that claim to offer fast charging.
jonmorris said:
A recent tear down confirms the Qualcomm chip for Quick Charge 2.0 support, so what we need now is for someone to get a compatible PSU that can 'talk' to the phone and then supply more power. That should see a huge improvement in charge time.
I am just trying to find a source for a compatible charger. So far I've only seen the Motorola Turbo Charger in the USA, and I'd be wary of buying anything made by a no-name brand at this point.
I have to assume the magnetic charging option won't be as fast, simply as there can't be a way for the PSU to know it is connected to a compatible device. Quick Charge 2.0 appears to require some sort of handshaking, or else the PSU will limit the power output, hence why I'd be wary of any chargers appearing on eBay or Amazon that claim to offer fast charging.
Click to expand...
Click to collapse
I have read excellent reviews for the Blackberry Premium Charger (the one with the yellow tip), super cheap on Amazon right now. Recommended by Android Central and others for its 2A charging capability. I have used it in the past from my HTC One X days and have re ordered for my Z3. Honestly, my Z3 is charging more than fast enough with the OEM supplied charger, which may be less powerful but more optimised than another OEM's charger. The one I'd trust most if I was forced to use one would be the above model of the BB charger.
jonmorris said:
I have to assume the magnetic charging option won't be as fast, simply as there can't be a way for the PSU to know it is connected to a compatible device. Quick Charge 2.0 appears to require some sort of handshaking, or else the PSU will limit the power output, hence why I'd be wary of any chargers appearing on eBay or Amazon that claim to offer fast charging.
Click to expand...
Click to collapse
more power can either be achieved through more voltage (that could potentially be harmful if the hardware is not compatible) or more current. More current is 100% save as the charging circuit just takes what it needs, independent of the (more potent) capabilities of the charger.
As Oppo showed with its find 7 just raising the current is a viable option which works. This is also a Snapdragon 801 device.
With the 1.5A original charger and cable, using Battery Monitor Widget shows the charging rate at around 900mA to 1000mA.
So I guess Z3 is restricting to max 1A charging?
jonmorris said:
I have to assume the magnetic charging option won't be as fast, simply as there can't be a way for the PSU to know it is connected to a compatible device. Quick Charge 2.0 appears to require some sort of handshaking, or else the PSU will limit the power output, hence why I'd be wary of any chargers appearing on eBay or Amazon that claim to offer fast charging.
Click to expand...
Click to collapse
Would it be possible that the PSU simply always limits the power output? For example, the phone might try to draw 1.5A, but the PSU doesn't support it and limits at 1.0A. Then magnetic charging could work with 1.5A or even 2.0A without the need for communication over the D+ / D- pins. (And attaching the magnetic port with a USB adapter to a PC or Laptop might cause the USB Port to shut down and trigger an overcurrent warning.)
AKK03 said:
With the 1.5A original charger and cable, using Battery Monitor Widget shows the charging rate at around 900mA to 1000mA.
So I guess Z3 is restricting to max 1A charging?
Click to expand...
Click to collapse
That would make sense. Though wonder where the extra 500 mA are going, it surely can't be the phone's standby. And given a typical maximum charging current of 1.0C (C = battery capacity), it would translate into 3.1A of charging current and therefore a 3.5A power supply.
Is this current constant from 1% to about 65%?
AKK03 said:
With the 1.5A original charger and cable, using Battery Monitor Widget shows the charging rate at around 900mA to 1000mA.
So I guess Z3 is restricting to max 1A charging?
Click to expand...
Click to collapse
If there are restrictions they are most likely within the Kernel and we may be able to change them in the future with custom Kernels
dragonfet said:
That would make sense. Though wonder where the extra 500 mA are going, it surely can't be the phone's standby. And given a typical maximum charging current of 1.0C (C = battery capacity), it would translate into 3.1A of charging current and therefore a 3.5A power supply.
Is this current constant from 1% to about 65%?
Click to expand...
Click to collapse
There is some fluctuation, but is roughly around 1A.
I have test 2 different charger
from "Battery Monitor Widget Pro" logs
with EP880 (1.5A max)
show ...................... 1.1A max
with 2 Amp charger
show .....................1.5A max
maxx228 said:
I have test 2 different charger
from "Battery Monitor Widget Pro" logs
with EP880 (1.5A max)
show ...................... 1.1A max
with 2 Amp charger
show .....................1.5A max
Click to expand...
Click to collapse
Thanks for the results. I have my Z3 by now and recorded some as well.
From 0 to 68%, it charges with 1000-1100 mA, then it goes into CV (constant voltage) mode and stays there until 95%. Then the curent drops slightly. The rest of the charging curve is not usable, as it was the first full charge my handset had. And the last for now, as I have to send it back due to a gap in the frame and microphone issues.
I'll post a complete curve when I have the new one and did a few cycles. What's clear for now:
1. Charging current with the stock charger is around 1.1 A max.
2. The phone charges up to 95% with 0.5% per minute. (Stock Charger)
3. It drops to 0.125% between 95% und 100%, likely to put less strain on the battery.
It's nice to see that there's appearantly support for higher charging currents. Though we should keep in mind that a higher current also means more stress for the battery, especailly when the phone is used while charging (higher battery temperature as the CPU also adds heat).
my Z3 came with the charging dock dk48.. it is rated at 1.8a, charging is fast
I can't speak to the Z3 (yet), but my Z1s charges nearly twice as fast on the magnetic charging dock as it does through the USB connection. As a result, I can leave my screen on at full brightness while on the dock and still charge. I would *expect* similar behaviour from the Z3.
Original charger: about 1.0A - 1.1A. Result: 3h 50p - 4h for fully charged.
Magnetic charging dock or cable: 1.5-1.6A. Spend only 2h 45p
I'm tesing Xiaomi MI Power Banki 10400mAh. First test: 1.6A, much faster than original charger. A bit surprise!
http://www.mi.com/sg/mipowerbank/
Zanr Zij said:
Original charger: about 1.0A - 1.1A. Result: 3h 50p - 4h for fully charged.
Magnetic charging dock or cable: 1.5-1.6A. Spend only 2h 45p
I'm tesing Xiaomi MI Power Banki 10400mAh. First test: 1.6A, much faster than original charger. A bit surprise!
http://www.mi.com/sg/mipowerbank/
Click to expand...
Click to collapse
The original charger is rated 1.5A, actual charging on Z3 is 1.0A.
Xiaomi is rated 2.1A, so I guess is reasonable to expect 1.5A actual charging from it.
For your magnetic charging dock or cable, are you using the original charger?
With the original charger, I'm getting the same result with or without dock.
Zanr Zij said:
Original charger: about 1.0A - 1.1A. Result: 3h 50p - 4h for fully charged.
Magnetic charging dock or cable: 1.5-1.6A. Spend only 2h 45p
I'm tesing Xiaomi MI Power Banki 10400mAh. First test: 1.6A, much faster than original charger. A bit surprise!
http://www.mi.com/sg/mipowerbank/
Click to expand...
Click to collapse
where did you get the magnetic charging cable?
AKK03 said:
The original charger is rated 1.5A, actual charging on Z3 is 1.0A.
Xiaomi is rated 2.1A, so I guess is reasonable to expect 1.5A actual charging from it.
For your magnetic charging dock or cable, are you using the original charger?
With the original charger, I'm getting the same result with or without dock.
Click to expand...
Click to collapse
With Mi Power Bank, I used micro USB cable, not magnetic.
I'm using Samsung Note 3 2.0A charger. Through micro USB port, I got lower current, about 1.0-1.2A but with magnetic cable 1.5-1.6A.
---------- Post added at 11:31 AM ---------- Previous post was at 11:30 AM ----------
Shudder123 said:
where did you get the magnetic charging cable?
Click to expand...
Click to collapse
Included in my Z3 retail box
Zanr Zij said:
With Mi Power Bank, I used micro USB cable, not magnetic.
I'm using Samsung Note 3 2.0A charger. Through micro USB port, I got lower current, about 1.0-1.2A but with magnetic cable 1.5-1.6A.
---------- Post added at 11:31 AM ---------- Previous post was at 11:30 AM ----------
Included in my Z3 retail box
Click to expand...
Click to collapse
you mean the USB cable?
Shudder123 said:
you mean the USB cable?
Click to expand...
Click to collapse
My Z3 Dual retail box has 2 cables: usb and magnetic
Zanr Zij said:
My Z3 Dual retail box has 2 cables: usb and magnetic
Click to expand...
Click to collapse
where did you get yours from? mine only came with a USB cable
I have a z3 dual .. I did not notice the second cable in the box. I have to check again

[Q] Installed Wireless QI Chrager- how do I see exactly how fast it is charging?

I just installed a QI charger for my new LG G2. I got a few QI charging pads as well. I want to see how fast it is charging, or the charge rate (500mah, 750? ect) as the receiver is supposed to do the following charge: DC 5V/500mA-1000mA .
Ive tried a few apps, but I cant find one that specifically says what the charging rate is. Anyone know the best way to figure that out?
Two questions:
1) When you say you "installed a QI charger for my new LG G2" exactly what do you mean there, and I do mean exactly: are you referring to getting a Qi charging pad (which you mention) or do you mean you got some kind of part that you physically installed in or on your G2 - the Verizon G2 is the only one that supports wireless charging out-of-the-box so, that's why I'm asking.
2) With respect to actual charging, the output of the Qi wireless charging pad is directly related to the amperage/current supplied by the actual AC adapter or USB charger you're using with it. If it's about 1A (the AC or USB charger) then you're going to lose quite a bit of power in the actual charging process because wireless charging is pretty severely inefficient most of the time, give or take you'd get 400 to 500mAh going into the actual device from the charging pad.
What I'm saying is if you have a Qi wireless charging pad, you'd be best served using as high an amperage/current charger for the pad itself so that the pad can then transfer as much as possible to the device itself. Anything less than a solid 2A charger attached to the Qi wireless charging pad and you're basically wasting a lot of it in the process and might be better off actually just using the USB port on a computer or something (about 500-550mAh max anyway).
Basic rule of thumb: the Qi wireless charging pad can use all the amperage/current it can get, with at least the factory LG 1.8A charger being what I'd call the bare minimum (and with that you'd probably be able to push about 900 to 1000 mAh (aka 1A) to the device. Qi hardware is roughly 40% efficient so, you're going to lose a lot in the process as stated; the more you start with the more that gets to the device even accounting for the inefficiency.
As far as measuring the current, you can try CurrentWidget on the Play Market, it may provide you with some info in terms of the charging rate.
br0adband said:
Two questions:
1) When you say you "installed a QI charger for my new LG G2" exactly what do you mean there, and I do mean exactly: are you referring to getting a Qi charging pad (which you mention) or do you mean you got some kind of part that you physically installed in or on your G2 - the Verizon G2 is the only one that supports wireless charging out-of-the-box so, that's why I'm asking.
2) With respect to actual charging, the output of the Qi wireless charging pad is directly related to the amperage/current supplied by the actual AC adapter or USB charger you're using with it. If it's about 1A (the AC or USB charger) then you're going to lose quite a bit of power in the actual charging process because wireless charging is pretty severely inefficient most of the time, give or take you'd get 400 to 500mAh going into the actual device from the charging pad.
What I'm saying is if you have a Qi wireless charging pad, you'd be best served using as high an amperage/current charger for the pad itself so that the pad can then transfer as much as possible to the device itself. Anything less than a solid 2A charger attached to the Qi wireless charging pad and you're basically wasting a lot of it in the process and might be better off actually just using the USB port on a computer or something (about 500-550mAh max anyway).
Basic rule of thumb: the Qi wireless charging pad can use all the amperage/current it can get, with at least the factory LG 1.8A charger being what I'd call the bare minimum (and with that you'd probably be able to push about 900 to 1000 mAh (aka 1A) to the device. Qi hardware is roughly 40% efficient so, you're going to lose a lot in the process as stated; the more you start with the more that gets to the device even accounting for the inefficiency.
As far as measuring the current, you can try CurrentWidget on the Play Market, it may provide you with some info in terms of the charging rate.
Click to expand...
Click to collapse
Firstly, thank you for taking time to write such a great response. I really appreciate it!
1) Yes I installed a universal sticker. I used this one http://www.amazon.com/gp/product/B00MN3RR7Q/ which is supposedly supposed to do 1000mA. People in the reviews seem to say they are getting good results. I wish the ATT version had wireless out of the box, but then if it did I would be stuck with PMA charging. I installed an actual NFC/PMA sticker in my G3. PMA kind of sucks...anywho.
2) This is the pad I am using: http://www.amazon.com/gp/product/B00H9B7ALK/. 1.5a input and 1a output. On this one, I am averaging about 3% per 10 minutes or 30% an hour. So roughly 3 hours and 20 minutes to full charge. I can try the the stock LG. Oh, my Dell Venue 8 Pro is a 2a one. I can try that as well. Can the paid take the 2a in even though it was built for 1.5a in?
I will try current widget. Ive been using battery monitor to log as well.
1) Neat, I didn't even know such a thing existed, I may have to give that a shot with my G2 at some point (if I decide to keep it, that is).
2) As stated before, using a higher amperage/current charger or power supply is preferred, sure. It should help get the charging done faster and again the device (meaning the charger) will pull what it requires and nothing more.
Basic electronics 101 here: two things that matter with respect to smartphone chargers (or most any device, to be honest) - amperage aka current and voltage.
Voltage is pushed from a power supply meaning it will always be the same amount, give or take micro-variations. If it's a 5VDC power supply (of any kind) it's designed to provide 5VDC constantly. If it's some other value, say 9VDC, 12VDC, and so on, that's how much it pushes - if you were to connect a 9VDC charger to a smartphone or other device that's designed for a 5VDC input, you'd fry the electrical circuits in the device because it would be flooded with more power than it's designed for.
Amperage aka current is pulled from a power supply and only what is required is what's actually taken. With respect to smartphones, most of the higher end devices these days can make use of roughly 1.2 to 1.8 A (read as Amps) when it comes to charging. This means if you had a charger that output 5VDC (from what I just said above that's the standard worldwide for such devices as smartphones) but could theoretically provide 5A of current, the smartphone technically would not be damaged because it would only pull roughly 1 to 1.8 Amps at most - if you do use CurrentWidget and you plug in the G2 and look at the reading while it's charging, you'll note that the level of amperage/current being pulled from the charger fluctuates like crazy - voltage stays constant (give or take a microvolt here and there) but the current will jump all over the place, especially if you enable the "Smart Charging" feature of the G2.
The reason this happens is because when a LiIon battery is pretty low on a charge, say down to 10-15%, it's "gone deep" as the saying goes and the charging circuit will pull the max amperage/current that the charger is capable of producing and that can be measured/seen using CurrentWidget. As the battery gets into the 90% full range, the amperage/current draw will reduce (again, especially with the Smart Charging enabled) as the battery gets towards being totally full. This is a good thing in most every respect and it keeps the LiIon battery in good shape too - if it pulled the max current till it was 100% it wouldn't necessarily be so good and would heat the battery up more than necessary and LiIon batteries are very sensitive to temperature variations.
Hence, phones get fried by "cheap Chinese chargers" a lot of times because of voltage issues and faulty voltage regulators, not from amperage/current problems. It's actually kind of difficult to kill a device with amperage/current, but screwing around with the voltage will destroy a device almost 100% of the time and quite fast too.
Also, this is the reason why you'll see a phone charge relatively quickly to the 99% point then it seems to take even longer to get that last 1% to finish it off at 100% - it's the way LiIon charging technology works and helps the battery lifespan (meaning how long the battery is useful for measured in years and not "battery life" in terms of how long it can run before you have to charge it again measured in hours). The charging process "slows down" as it gets close to being full which works great for this kind of technology.
Hope this info helps...
br0adband said:
Basic rule of thumb: the Qi wireless charging pad can use all the amperage/current it can get, with at least the factory LG 1.8A charger being what I'd call the bare minimum (and with that you'd probably be able to push about 900 to 1000 mAh (aka 1A) to the device. Qi hardware is roughly 40% efficient so, you're going to lose a lot in the process as stated; the more you start with the more that gets to the device even accounting for the inefficiency.
Click to expand...
Click to collapse
Okay let me see if I understand this correctly. The OUTPUT of the qi charging pad could be 1000mAh, but since the wireless QI hardware is only 40% efficient, the actual charge rate will be more around mAh to 500mAh? Im recording an actual charge rate of 500mAh and my phone states it is on AC power and not USB.
If the receiver on the phone states it can do up to 1000mAh, what I need to find is a charger that outputs a lot more like 2000mAh and at 40% efficiency I might be able to get around the 1000mAh?
That pretty much sums it up, yep - as long as you account for the inefficiency of the Qi charging technology, you can get faster charge times and still use it without having to plug in/unplug, etc the old fashioned way.
It works, it's just not nearly as fast or efficient as the old fashioned way so, give the Qi pad plenty of current and you'll be fine - since it will pull what it needs, using a 1.8A or 2A or even more won't hurt it, but it will make it pretty damned warm to the touch when it's charging so keep that in mind. As the G2 would be sitting on top of the Qi pad, if the pad gets warm or even hot then obviously the G2 will as well by heat transfer and heat/high temps are bad for LiIon batteries as I mentioned earlier.
It's a trade-off more than anything else but again, it does work as long as you're understanding the hows and whys to make the best of it.
br0adband said:
That pretty much sums it up, yep - as long as you account for the inefficiency of the Qi charging technology, you can get faster charge times and still use it without having to plug in/unplug, etc the old fashioned way.
It works, it's just not nearly as fast or efficient as the old fashioned way so, give the Qi pad plenty of current and you'll be fine - since it will pull what it needs, using a 1.8A or 2A or even more won't hurt it, but it will make it pretty damned warm to the touch when it's charging so keep that in mind. As the G2 would be sitting on top of the Qi pad, if the pad gets warm or even hot then obviously the G2 will as well by heat transfer and heat/high temps are bad for LiIon batteries as I mentioned earlier.
It's a trade-off more than anything else but again, it does work as long as you're understanding the hows and whys to make the best of it.
Click to expand...
Click to collapse
I ran the battery down to 70% and I have it on the charger with a 2a wall adapter. I will see how fast it charges. But it seems like I will get roughly 1/3rd the charging speed of a wall adapter. Which means in the car using gps with the screen on and QI chrarging will probably mean a negative overall power situation.
Im also going to try a high speed, charging only cable like this http://www.amazon.com/gp/product/B009W34X5O/ between the wall adapter and the charging pad to see if there is any difference.
Don't waste your money, that thing is no better than a "Gold Plated 56K Modem Cord," seriously. Gold plating, "high speed," all that stuff is marketing BS and means absolutely nothing in the long run - it's a microUSB cable, nothing more.
In 20+ years of using USB cords of all kinds I've yet to see one that's corroded so, that gold plating is not gonna matter anyway.
Any microUSB cable you can find today is more than capable of handling ~2A without a single issue and it's well known that the G2 can max out at 1.6A draw for charging anyway so any cable is more than adequate for doing it.
br0adband said:
Don't waste your money, that thing is no better than a "Gold Plated 56K Modem Cord," seriously. Gold plating, "high speed," all that stuff is marketing BS and means absolutely nothing in the long run - it's a microUSB cable, nothing more.
In 20+ years of using USB cords of all kinds I've yet to see one that's corroded so, that gold plating is not gonna matter anyway.
Any microUSB cable you can find today is more than capable of handling ~2A without a single issue and it's well known that the G2 can max out at 1.6A draw for charging anyway so any cable is more than adequate for doing it.
Click to expand...
Click to collapse
Hah! I already have one I use in the car
shaxs said:
I ran the battery down to 70% and I have it on the charger with a 2a wall adapter. I will see how fast it charges. But it seems like I will get roughly 1/3rd the charging speed of a wall adapter. Which means in the car using gps with the screen on and QI chrarging will probably mean a negative overall power situation.
Im also going to try a high speed, charging only cable like this http://www.amazon.com/gp/product/B009W34X5O/ between the wall adapter and the charging pad to see if there is any difference.
Click to expand...
Click to collapse
Okay I was able to maintain neutral power with the screen on and running gps. Let it go for almost 2 hours and it was at the same percentage as when I started. Im good with that for car use.

[Comparison] Updated Charging Speeds Comparison (QC 2.0/3.0, 10W Qi, Standard) S7/S7E

Method:
First I used my phone until the battery was below 15% in order to get a better picture of what the charging would look like over almost a full battery cycle. I did not start at the same battery percentage for each test because I did not find any benefit to doing so. I original did this for uniformity, but it did not make a difference after trying it using the more accurate equipment.
I then cleared my history in the Battery Monitor Pro Widget (BMW Pro) recording app which was used to log the battery [mV], battery temperature [F], time, and battery percentage changes. Once this was done I plugged in my USB Power Monitor, turned airplane mode on, removed the case, and let the phone charge. I started logging the data via my power monitor once the phone showed it was charging. From this point onward I let the phone charge without interrupting it until it reached 100%, then I let it charge for another 10-60 minutes to see if it was still drawing power from each charger. Once all of this was done, I exported my data collected from BMW Pro, emailed it to myself, and pasted it along with the USB Power Monitor data into an Excel spreadsheet. All of the data was then delimited to separate the clusters of data due to the way they were recorded, and subsequently graphed. The USB Power Monitor recorded data points every 0.36 seconds, while the BMW Pro took recordings every 5 seconds because I was having issues with the “real-time” recording option in the app working correctly.
All of the data was then graphed into the nice figures you will see below; each color reflects the same variable across all of the graphs to make reading them easier. I included a legend at the top of each set of graphs which should also help make it easier to read the data.
The most interesting part of this test is how cool the S7 Edge stays while charging, and the very marginal difference in overall charging time between QC 2.0/1.0. A 15-minute gap is marginal at best given the ‘big improvements’ Qualcomm claimed when launching the newer standards.
When conducting the wireless charging tests I think there is some error in the Samsung Fast Wireless charging data, so I plan on redoing it at some point. I already redid the Choetech one because it has a similar strangely long, but now it seems more in line with what I initially found before using the newer testing equipment.
I wanted to also quickly point out that both my HTC 10 and S7 Edge keep pulling current even after the phones show they are 100% charged. I’m not talking about a tiny amount; they both pulled ~1-5W+ after hitting 100% battery which is A LOT considering they are reporting to be fully charged. I verified this using 3 multimeters just to be sure. It appears as if Qualcomm, or the OEM’s are falsely reporting when the phone is actually charged, or there’s some other shady things going on here.
Another thing I wanted to mention is how the S7 Edge is so consistent in the way it charges the battery. It could be due to the lower rates Samsung uses (9V/1.67A max which is 15.03W) vs the HTC 10’s up to 18W that I’ve seen it pull. Just take a look at how the S7 Edge charges using QC 2.0 compared to the HTC 10 with lower temperatures, similar times, and a much more consistent overall charging curve.
If you look at the Tronsmart & Choetech QC2.0 tests, then you might notice the large difference between the two. The Tronsmart charger has a harder time holding onto the proper voltages, therefore it bounces around more from ~8.92V-9.03V (a 0.11V change) while the Choetech one ranges from 9.077V-9.092 which is a significantly smaller 0.015V range. The power control chip is responsible for controlling these voltages, and clearly the Choetech one has a better chip in it. This is especially important for external battery packs where efficiency really matters due to the limited amount of power they can store.
Equipment:
These tests were conducted using a series of different chargers. The same brand was used for both Quick Charge 2.0/3.0 tests to minimize experimental error; This trend remained the same was also done for the wireless charging tests
Wall Chargers:
Quick Charge 2.0: Tronsmart 18W charger 5V/2A, 9V/2A, 12V/1.5A
Quick Charge 3.0: Tronsmart 18W charger 3.6-6.5V/3A, 6.5-9V/2A, 9-12V/1.5A
USB inline Power Monitor:
XYZ Studio 0-24V, 0-3A USB Power Monitor
Tronsmart 5-12V USB multimeter (not used in this test, but was used in the older version)
Software/App(s):
Battery Monitor Widget Pro
Excel
Notepad++
Realterm (for the USB power monitor logging)
Legend
QC 2.0 Tronsmart S7
QC 2.0 Choetech
QC 1.0 Samsung
Choetech Fast Wireless Charger
Samsung Fast Wireless Charger
Samsung Wireless Charger
Normalized data Table
Full sized downloadable pictures of everything (data wise) you see above.
very good stuff!
maybe you could also record the heat at the hottest spot of the phone during charging? I think qc3 has the same charge rate but its able to change voltage to reduce creating waste heat compared to qc2.0.
my main concern with the s7 is the battery life, i know it won't last me a full 18hr day so i really need a portable fast qc2 charger that is pocketable, so maybe 5000mah, but have not seen such a small qc charger tho
Excellent post and well-made graphs. Thanks for your efforts.
well done. good info here.
sonhy said:
very good stuff!
maybe you could also record the heat at the hottest spot of the phone during charging? I think qc3 has the same charge rate but its able to change voltage to reduce creating waste heat compared to qc2.0.
my main concern with the s7 is the battery life, i know it won't last me a full 18hr day so i really need a portable fast qc2 charger that is pocketable, so maybe 5000mah, but have not seen such a small qc charger tho
Click to expand...
Click to collapse
I don't have a thermal camera, or way to do that otherwise I gladly would. I can recommend a small 6000mah external battery pack if you want; Ill do a quick write up too (if you need one). The Samsung charger stayed at 9V the whole time per my multimeter's reading it just dropped go .5A near the end.
CLARiiON said:
Excellent post and well-made graphs. Thanks for your efforts.
Click to expand...
Click to collapse
ISperfection said:
well done. good info here.
Click to expand...
Click to collapse
Thank you, I will add in a standard wireless charger test (since my free Samsung one is enroute), and I can also get their fast charger too. I believe Samsung's fast wireless charger is only 7W so it would be slower than the Choetech one but it never hurts to see how fast it is.
Sent from my Nexus 6P using XDA Labs
@Pilz yes pls let me know of a qc2.0 small portable charger I think a quick 30mins charge to add 50% battery life mid day will be the best ease-of-use solution for me.
with the heat measurement, I'll be happy with your commercial grade temperature sensor that the great designer created for you, your fingers or better yet, the inside of your wrist.
preferably touching the same area on the phone every time and grading something like 1-5 hot/comfort levels maybe? just suggesting, no pressure
sonhy said:
@Pilz yes pls let me know of a qc2.0 small portable charger I think a quick 30mins charge to add 50% battery life mid day will be the best ease-of-use solution for me.
with the heat measurement, I'll be happy with your commercial grade temperature sensor that the great designer created for you, your fingers or better yet, the inside of your wrist.
preferably touching the same area on the phone every time and grading something like 1-5 hot/comfort levels maybe? just suggesting, no pressure
Click to expand...
Click to collapse
I'll look into some methods to measure the heat easily while they're charging. I'm conducting the standard wireless charger test using my free Samsung wireless charger right now QC 2.0 chargers the fastest when you start at a very low battery percentage, so ideally you can achieve the results posted, but ambient temperature, starting % etc contribute to whether or not that's attainable. It's still a good estimate for 30 minutes of charging +/- 5% for other factors. The phone also chargers slower when the screen is in. The rate would go from 9V/1.67A to 9V/1.10A with the screen on. It was very consistent when I turned the screen on and off during the test.
Sent from my Nexus 6P using XDA Labs
i actually won't care about heat issues while charging this time round, it'll be like my moto defy, i just run it under cold water after a fast hot charge, wont be using the s7 for many years so not worried about moisture build up.
i have ordered a magnet micro usb cable that says its rated for 2.4A charging so hopefully it'll allow easy qc2.0 charging, no need to plug in, it magnetically snaps on and off.
i think the best charge setup would be a 30mins quick charge (magnet) on the office desk than a 60mins wireless qi charge, carried in your pocket type situation.
sonhy said:
i actually won't care about heat issues while charging this time round, it'll be like my moto defy, i just run it under cold water after a fast hot charge, wont be using the s7 for many years so not worried about moisture build up.
i have ordered a magnet micro usb cable that says its rated for 2.4A charging so hopefully it'll allow easy qc2.0 charging, no need to plug in, it magnetically snaps on and off.
i think the best charge setup would be a 30mins quick charge (magnet) on the office desk than a 60mins wireless qi charge, carried in your pocket type situation.
Click to expand...
Click to collapse
Did you by chance order the Znaps? I backed them ages ago for both the Type-C and micro USB connectors. If I'm lucky I might eventually maybe sometime before I die receive them. I don't expect much from a kickstarter campaign that's been delayed this much. I'm finishing up the standard Qi/PMA charging test. It shouldn't matter the standard it's using but if it's important the Samsung wireless charger is actually PMA.
Sent from my Nexus 6P using XDA Labs
OP Updated
-Standard wireless charging test added
-All figures updated to reflect the new test
no, its from aliexpress, $10 or so, ive seen cheaper so I would say the poor Kickstarters had their designs stolen and made cheaper... im not sure, i just buy what's available and easy. just search magnet usb cable, you'll find heaps, the more exy ones claim 2.4A current rating.
sonhy said:
no, its from aliexpress, $10 or so, ive seen cheaper so I would say the poor Kickstarters had their designs stolen and made cheaper... im not sure, i just buy what's available and easy. just search magnet usb cable, you'll find heaps, the more exy ones claim 2.4A current rating.
Click to expand...
Click to collapse
Let me know how it works, I rarely use cables to charge my phone becusse I hate micro USB ports plus I'm used to the type C on Nexus.
Sent from my Nexus 6P using XDA Labs
Have you tried charging with 18w charger(not wireless) rather than the samsung one?
peachpuff said:
Have you tried charging with 18w charger(not wireless) rather than the samsung one?
Click to expand...
Click to collapse
Yes it doesn't matter becuase the phone is only rated for 15.03W so it can't use more than that no matter the charging method. See screenshot below:
Sent from my Nexus 6P using XDA Labs
@Pilz yeah sure, it should arrive in a couple of weeks. i hate plugging in as well, even with the usb type c, its reversible but finding the port isn't always easy, they should have made the port surface like a cone or funnel so your guided into the port more easily.
the use of the magnet is awesome, Sony's external side charging pins have been around for ages, its really the charging current and quality of the copper that im worried about.
sonhy said:
@Pilz yeah sure, it should arrive in a couple of weeks. i hate plugging in as well, even with the usb type c, its reversible but finding the port isn't always easy, they should have made the port surface like a cone or funnel so your guided into the port more easily.
the use of the magnet is awesome, Sony's external side charging pins have been around for ages, its really the charging current and quality of the copper that im worried about.
Click to expand...
Click to collapse
I just wish they had Type-C because its so much better especially after using it for a while now.
Sent from my Nexus 6P using XDA Labs
I never knew that plugging in a micro USB cable was so difficult. It could be one of those things that once you try a better alternative (type c maybe?) makes you ask how you lived without it, but I don't see what the fuss is about just yet.
I've used wireless chargers for years (way back in the NExus 5 days even) including in the car. Any word on fast wireless charging and heat? I'm worried about it pumping a ton of heat on to the back of the phone especially for extended periods such as overnight.
xxaarraa said:
I never knew that plugging in a micro USB cable was so difficult. It could be one of those things that once you try a better alternative (type c maybe?) makes you ask how you lived without it, but I don't see what the fuss is about just yet.
I've used wireless chargers for years (way back in the NExus 5 days even) including in the car. Any word on fast wireless charging and heat? I'm worried about it pumping a ton of heat on to the back of the phone.
Click to expand...
Click to collapse
Micro USB is just more of a hassle becusse usually you need to angle it while inserting it into the phone. Type-C is nice becuase there no worrying about how I need to orient a cable when I'm half awake plugging my phone in. It's hard to understand why its nice until you use it everyday.
I haven't been able to measure the heat yet, but the phone is cooler using the 10W wireless fast charger than it is using QC 2.0. The phone isn't hot to the touch but it is warm using the fast wireless charger. I'll try to download a battery monitoring app that measures battery temp while it's charging. This method won't be as accurate as physically measuring it, but it should still give a good indication of the temperature.
Edit: I tested the temperature using GSAM battery montior via the fast wireless charger fro ~6% charge (28-34%) and the temperature rose 6 [F], the I let the phone cool and tested QC 2.0. The phone was charger for 6% to keep things cosnistent with a temperature change of 5[F]. I would need to find a way to more accurately measure these values because that quick test doesn't really mean anything at this point.
Sent from my Nexus 6P using XDA Labs
Does the Adaptive Fast charging by Samsung with with QC 2.0 compatible devices or is it only exclusive to Samsung?
ahrion said:
Does the Adaptive Fast charging by Samsung with with QC 2.0 compatible devices or is it only exclusive to Samsung?
Click to expand...
Click to collapse
It's just a QC 2.0 charger from what I can tell. I have a battery pack that will charge using QC 2.0 so I can test it using my multimeter
Sent from my Nexus 6P using XDA Labs

G5 charging data with QC2.0 and QC3.0

There's a wall of text below, but you can skip all that here and just soak in my answers to some general interest questions. My data is presented below in case you want to bore yourself with the details.
See post #7 for QC3 data http://forum.xda-developers.com/showpost.php?p=66646418&postcount=7
1. Does using a micro-USB to USB-C adapter impede charging amperage, as measured by the Android OS?
No, actually not significantly at all. I'm somewhat surprised by this.
2. Does the LG charger work as fast as a certified QC2 charger?
Yes, pretty much.
3. Does AOD affect charging rates? With QC2, the amperage drops significantly if charging with the screen on, using the phone, etc. AOD probably is different, so let's prove it.
AOD does NOT appear to affect charging rates, though if the phone is charging in a bright environment it might.
4. What are some standard temperatures in these scenarios and at rest?
During charging, the highest my phone hits is ~31-32oC. With it plugged in but not delivering any amperage, it cools to ~23oC. At rest, unplugged, depending on ambient temps, it varies anywhere in the 20s.
5. What amperage does QC2 provide at max?
~3000mA, if the battery % is low enough. And not for very long. For comparison, on my G4, the max was about ~2400mA on QC2, 1800mA with a non-QC charger.
EDIT: I've found that the Android OS cannot accurately list amperage numbers. I think this is because it presumes all input will be at 5V. With QC2 and QC3, this is no longer the case. With my USB multimeter and a QC2 charger, the max amperage is ~2.4A, which slowly drops as the charging % increases.
6. How long does it take to fully charge the G5?
On QC2.0, 1 hour 20 minutes, from 0 to 100%.
There's been some discussion regarding charging rates and charging adapters on our newly released G5s. In the US, on T-Mobile, the phone comes with a QC2-style charger, "Fast Charge." I have read this is not exactly the same an official certified QC2 (I don't know how accurate that is though).
The QC2 standard supports 4 different modes, 5V/2A, 9V/2A, 12V/1.67A, and a 20v option. For comparison, QC3 has dynamic voltage, going from 3.2v - 20v.
The 'fast charge' adapter provided by LG supports the 9v and 5v modes, though the amperage is listed as 1.8A:
9.0V @ 1.8A or
5.0V @ 1.8A
In addition to the LG stock adapter, I also have a Tronsmart QC2 charger which is rated at 5V/2A, 9V/2A, and 12V/1.5A. http://www.amazon.com/Updated-Versi...direct=true&ref_=oh_aui_search_detailpage#Ask
In addition to the stock LG-provided USB-A to USB-C cable, I have some TechMatte micro-USB to USB-C converters, Benson approved. Everyone invested in Android has tons of micro-USB cords, but USB-C not so much. These cheap adapters help with the transition. They are the #1 sellers on Amazon and available here:
http://amazon.com/TechMatte-Connect...&redirect=true&ref_=oh_aui_detailpage_o05_s00
With my 2 chargers and 2 cable set ups, I attempted to systematically document the charging using Battery Monitor Widget Pro (BMW Pro), a great app because it will log a host of stats with no user intervention. (This may not be as accurate as someone using external equipment like a Charger Doctor, but it's good enough for our purposes).
First, some general observations. The first day I had the G5 I did not activate the SIM, nor did I install all my apps. So overnight, it sat connected to wifi but not doing much else. Doze was able to get an impressive -5mA drain for much of the night. Not such a surprise since it wasn't trying to do much. This is without AOD.
Second, when the phone was going through its initial re-installation of my dozens of apps, it ran up to ~40oC. I don't think this is surprising, but it was good to nail down a number.
Third, the voltage tops out at 4400mV. The charger keeps drawing a decent mA for ~40 minutes after it hits 100%. Maybe some additional top-off juice?
Methodology - No phone interaction during the relevant measurement time. Kept whatever other background apps running. BMW Pro logged measurements every 10 minutes. Connected to wifi.
Scenario A - QC2.0 Tronsmart charger with LG-supplied USB-C cable. I would expect this to be the fastest since the charger has 3 modes to choose from (though the wattage from the 12V and 9V is technically the same) and there is no adapter to flow through.
This charging cycle data was collected after I ran my battery completely down. I then rebooted and plugged in the charger asap. This data shows the max amperage to be ~3000mA. This slowly decreases over time.
A simpler read of the charge rate data:
18% @ 10 min, 3063 ma
38% @ 20 min, 2866 ma
57% @ 30 min, 2653 ma
72% @ 40 min, 2025 ma
84% @ 50 min, 1484 ma
92% @ 60 min, 974 ma
97% @ 1:10, 538 ma
100% @ 1:20, 437 ma
Scenario B - Always on display with Tronsmart QC2.0 and USB-C cable. Does AOD change anything from Scenario A?
One thing I noticed is that the AOD is responsive to ambient lighting! So that definitely could alter whatever charging curve we record. This cycle was initially started at 0% in a room with some fading sunlight but no direct illumination. This run was hampered by the phone shutting down from a low battery at the very beginning of the cycle despite being plugged in! Maybe there was too much current demanded by the phone as it booted up and with the AOD on. So this run necessitated starting at ~2%. Hence a 2% 'bump' in the early data points.
Transcribing the data:
21% @ 10 min, 3017 ma
40% @ 20 min, 3065 ma
60% @ 30 min, 2654 ma
74% @ 40 min, 2022 ma
86% @ 50 min, 1482 ma
93% @ 60 min, 975 ma
97% @ 1:10 min, 537 ma
100% @ 1:20 min, 399 ma
Once again it takes 1:20 for a full charge. Despite the 2-3% variability on the lower end, the higher data points basically match Scenario A's. So I would conclude having AOD on does not affect charging times, though that could change if the phone was in a bright environment.
Scenario C - "Fast charge" adapter provided from LG, with micro-USB to USB-C adapter. I would have guessed this would be the slowest charge.
Starting amperage here was again ~3000mA. I didn't start this cycle at 0%, probably more like 25%, but the charging percentages coincidentally lined up remarkably well for a good comparison. (I'd want a 0% start cycle to really confirm this data which I may add in the future).
38% @ 10 min, 3065 ma.
58% @ 20 min, 2654 ma
72% @ 30 min, 2021 ma
84% @ 40 min, 1479 ma
92% @ 50 min, 974 ma
97% @ 60 min, 664 ma
100% @ 1:10 min, 419 ma
So even though the charging started at 25% battery (so obviously the time measurements can't line up), the % charged sample points line up for nearly direct comparisons to Scenario A. At each battery %, the mA are nearly identical. So I'm concluding there's very little mA loss from the adapter.
You might argue for 2 other scenarios here for full comparison, the QC2.0 charger with the adapter and the LG charger with the USB-C cable. Maybe in another update. Currently, I think Scenario A and C here would be the fastest and slowest, respectively, at charging, so showing there is no difference at the extremes makes the other 2 scenarios less important.
If you get a chance, can you try with screen on & verify if you see what I've found that QC3 charges then at 1A & QC2 at 0.3A above 35c & 0.6A when cooler than 35C.
If so, it confirms that the real tangible benefit of QC3 is if you charge with screen on frequently, eg in a car would see a big boon.
Sent from my LG-H850 using Tapatalk
seems strange they have stepped away from the usual cc/cv li charging routine. is this a QC change?
I'm still in the midst of collecting data for the next presentation. There are a lot of permutations to go through, with a couple of cables and chargers.
In the meantime, I did confirm @stuart0001's observation that with the screen on, QC3.0 charges at ~1000mA, seen below (yellow band means screen on, green means AC power charging):
I didn't charge it all the way, just for ~30 minutes, but each measurement during that time did show the same charging amperage.
Also to add thoroughness, I have ordered a USB current/volt passthrough meter to more accurately report what happens.
More to come!
i find that the cheap as chips Samsung fast adaptive (2we version) charger you can get for around £5 on ebay works perfectly with the G5 and it recognises it as a fast charger.
waylo said:
I don't have a QC3 charger and I am debating if it is really worth it.
Click to expand...
Click to collapse
It's easier on the battery so you might get more life out of it.
QC2 charges as fast as it can then slows.
QC3 charges as fast as the phone will allow.
This can have a bearing on battery longevity. How much longer is debatable since you're still using QC which will be more stressful than non QC. The stock charger might not be QC but it is a fast charger and 1h30 is about std to from from empty to full with it.
See this post
less than a year and its replace battery time. Fortunately, not a big deal on LG's
QC3.0 data!
I have been working with 2 QC3.0 wall chargers with USB-A ports over the past couple of weeks. I’ve also purchased a USB voltmeter/ammeter to help with more measurements to understand our charging capabilities.
One charger is the ChoeTech QC3.0 18W USB Wall Charger, available here:
http://amazon.com/Charge-Charger-Co...&redirect=true&ref_=oh_aui_detailpage_o02_s00
The other is the Tronsmart WC1T 18W USB Wall Charger, available here:
http://www.amazon.com/Tronsmart-WC1...rue&ref_=ox_sc_sfl_title_1&smid=ALTVS0Q5KJ7M3
For full disclosure, I received both as free retail products courtesy of each company. They were both delivered via Amazon so they are the same as you’d get if you ordered them yourself.
I purchased for myself a very cheap USB multimeter, available here: http://www.ebay.com/itm/400963912153
It does okay. I then purchased a more reputable Drok multimeter, available here: https://www.amazon.com/DROK-Multime...true&ref_=ox_sc_act_title_1&smid=AFHAE9RJVUMB
Finally, ChoeTech provided a fairly capable USB multimeter of their own manufacture for my testing purposes.
Once again, my talking points first. Then a bunch of nitty gritty details afterwards if you so care.
1. Both QC3.0 chargers are made well and supply variable voltage, the main difference between QC3.0 and QC2.0.
2. The charging times for QC2.0 and QC3.0 are nearly identical!
3. The voltage used to attain these charging times, however, is much lower in QC3.0 than QC2.0. This will help with battery longevity.
4. We do NOT get the 80% in 35 minutes charging that is sometimes touted in QC3 ads. More like 65%. There are some reasons for this.
5. USB-C specification compliant USB-A to USB-C cables DO NOT limit our QC3.0 phone to 5V and 2.4A. This is safe per Qualcomm.
6. Our G5 phones seem to like ~6.5-7.0V charging voltage when used with a QC3.0 adapter. With our LG QC2-ish fast adapter it stays around 9V the whole time.
First, some relevant technical info re: USB-C standards vs QC3.0 charging.
QC3.0 is by definition not compliant with USB-C standards, because variable voltage is not allowed by the USB-C specification. So Nexus USB-C’s charging, which is adherent to USB-C spec, is not the same as Qualcomm QC3.0. You may have heard of Benson Leung, the Google engineer, who has set out to test USB-C devices and accessories. He does not endorse the G5 or the HTC 10 because they do not completely adhere to USB-C spec, but rather Qualcomm’s QC3.0.
Just because the cables are not USB-C spec does not mean that they are unsafe. To me, it really just means that USB-C spec devices may not be able to properly draw current from a power source when using a non-spec USB-C cable, which could damage the power source. Not exactly relevant to Qualcomm’s QC3.0. In fact, Qualcomm put out a statement to qualify this: http://www.androidcentral.com/qualcomm-addresses-usb-type-c-and-quick-charge-30-compatibility
The USB-C specs become a bit relevant when talking about USB-A to USB-C cables and adapters. Due to the circuitry required to make these spec, these cables and adapters are limited to 5V @ 2.4 A when used by USB-C spec devices. All the ones that Amazon sells now are USB-C standard compliant.
Based on my testing, however, this limitation does NOT extend to QC devices. We definitely get > 5V on my voltmeter testing. This was using both the LG-supplied USB-A to USB-C cable, as well as a Benson-approved USB-A to USB-C cable. The amperage measured with the USB volt/ammeter does not typically go >2.5A however. This may be more a reflection of the wattage rating of the chargers. They top out at 18W, and wattage = voltage * amperage. The top amperage their stats spout is 3A.
With the supplied LG fast charger (QC2.0-esque), it will hang out at 9V the entire time with the amperage starting out around 2A and then dropping as the battery fills.
I had stated previously in many places that the amperage tops out around ~3A early in the charging process, which is from data collected via the app Battery Monitor Widget (BMW). This is incorrect, due to the way the Android OS reports amperage. I have been informed that the Android OS amp data is based on 5V charging, so anything different from that (as we would see on QC2 and QC3) can result in erroneously high amperage readings.
I do not know if the LG supplied cord is spec because I do not have the equipment needed to test it (basically just a Nexus and the CheckR app). But I will be incorporating it into our test data to show you how it compares.
Here's a snapshot of the relevant stats printed on the adapters, with the Tronsmart on the left and the ChoeTech on the right:
One notable difference is that on the Tronsmart, the voltages are printed as variable, which is one of the major improvements to QC3.0. Interestingly, on the ChoeTech there is no mention of variable voltage. In my testing it does vary the voltage similarly, but my personal opinion is they are missing out by not advertising this on the label.
Other notable pros/cons:
1. The ChoeTech has a reversible USB-A port, so it doesn't matter which end is up. That's nice. It also comes with a USB-A to USB-C cord, though only 3 feet long.
2. The ChoeTech cable supplied is the same USB-A to C cable which has been reviewed and approved as USB-C spec by Benson Leung here: http://www.amazon.com/review/R3URN3...sb-20&linkId=9f4d7368af5d896b0482e4f62db75d06
ChoeTech support has confirmed this personally.
3. The TronSmart comes with a longer cord, but unfortunately it’s USB-A to micro-USB. It’s too bad it’s micro-USB, because I’m not aware of any QC3 phones that use microUSB. So you’ll need an adapter or a different cord.
First up, the ChoeTech.
@stuart0001 has posted an earlier review of the ChoeTech UK version, seen here: http://forum.xda-developers.com/lg-g5/accessories/choetech-qc-3-0-18w-wall-charger-t3356038. Interestingly, he found that the charge rates were exactly the same as his LG fast charger if the screen was off. There were some situations were QC3 charging was much better with the screen on at high temperatures.
For the first ChoeTech test run, I used the LG-supplied cable.
Top off amperage was applied for an additional 30-40 minutes after hitting 100%.
I repeated this with the ChoeTech Benson approved cable and found identical results.
Onto the Tronsmart. I used the G5 supplied LG cable first.
Repeating the cycle with the ChoeTech Benson approved cable gave nearly identical data.
Comparing side by side by side the QC2.0 data with the QC3.0 data:
So very intriguing. Just like with @stuart0001 's analysis, the charging times did not differ much at all from QC2.0 charging!
But there’s more to this than just the charging times. Using my voltmeter, the voltage for each charger is a bit different. Using the LG fast adapter, the voltage hangs around 9V for the entire duration with the amperage slowing decreasing.
Using QC3.0, voltage ranged between 6.3 - 8.3V, with amperage maxing at 2.7A.
(Note the nonstandard charging time data points. The voltmeter does not have any logging capability, so I physically had to check on it throughout the hour+. Sometimes I had things to do )
QC3.0 advertises 80% fill in 35 minutes for QC3.0, compared with 65% for QC2.0. We don’t really see this though. Possible reasons?
1. The phone has preset charging parameters that won’t let us go that fast. A Tronsmart support person has told me that the G5 likes 6V as its optimal charging level. We do see this on the voltmeter results much of the charging cycle. I believe this is set in the kernel programming.
2. The 18W rating on the chargers tested won’t allow for greater amperage or voltage. There are 24W chargers out there.
3. The USB-A port on the chargers have some limit? Would love to test a USB-C port QC3.0 charger (I think there’s only one on Amazon right now).
4. There is some sort of charging limitation in the USB-A to USB-C cable after all.
More ideas to think about.
EDIT:
Attempts to monitor charging voltage/amperage of the USB-A to micro-USB with USB-C adapter result in repeat disconnects and reconnects.
I think the amperage and voltages are too high for the connected USB meter to measure and pass through.
EDIT 2:
I purchased a more reputable USB meter and it works now. The cheap one would throw a fit and reset/cut off charging when the voltage or amperage hit its upper limits. I may re-test some of the voltage measurements in the future.
@waylo Thanks for that excellent write up.
Picking up on the Qualcomm advertised estimate. It's disingenuous at best (I'd say they're being fraudulent) . They state in small print that it's based on the 0-50% current, so how they can justify extrapolating that instead of using the actual time is beyond me.
https://www.qualcomm.com/products/snapdragon/quick-charge
{
"lightbox_close": "Close",
"lightbox_next": "Next",
"lightbox_previous": "Previous",
"lightbox_error": "The requested content cannot be loaded. Please try again later.",
"lightbox_start_slideshow": "Start slideshow",
"lightbox_stop_slideshow": "Stop slideshow",
"lightbox_full_screen": "Full screen",
"lightbox_thumbnails": "Thumbnails",
"lightbox_download": "Download",
"lightbox_share": "Share",
"lightbox_zoom": "Zoom",
"lightbox_new_window": "New window",
"lightbox_toggle_sidebar": "Toggle sidebar"
}
Sent from my LG-H850 using Tapatalk
Haha, that is very very sneaky of them. Seriously, why don't just extrapolate the first 20 minutes (40% then) and say it'll be full in 45 minutes then?
Getting some weird results on the USB meter trying to measure QC3.0 through USB-A to USB-micro cable with a USB-C adapter on it. Do you have one to try with your voltmeter?
waylo said:
Haha, that is very very sneaky of them. Seriously, why don't just extrapolate the first 20 minutes (40% then) and say it'll be full in 45 minutes then?
Getting some weird results on the USB meter trying to measure QC3.0 through USB-A to USB-micro cable with a USB-C adapter on it. Do you have one to try with your voltmeter?
Click to expand...
Click to collapse
Yes I have. I can have a look later. Something else I've noticed occasionally, but need to try & repeat, is that even different USB-A to C cables are giving quite wildly different voltages on the same charger.
Sent from my LG-H850 using Tapatalk
waylo said:
With the supplied LG fast charger (QC2.0-esque), it will hang out at 9V the entire time with the amperage starting out around 2A and then dropping as the battery fills.
Now, I have stated in many places that the amperage tops out around ~3A early in the charging process, which is from data collected via the app Battery Monitor Widget (BMW). So there is a bit of a discrepancy here. I have been a big advocate for BMW over other apps, due mostly to its passive logging. The dev of BMW has emailed me saying the mA is provided by the Android OS using a current sensor. So as of now, I don’t have a good explanation for how I routinely get ~3A charging amperage logs for the first 20 minutes while my ammeter does not show that draw. Could be a cheap (certainly) and inaccurate (don’t know) ammeter for all I know.
Click to expand...
Click to collapse
Am more likely to trust those cheap meters because they have proven to be invaluable in diagnosing charging problems with older devices. Software based tools proved to be not very useful with fault finding.
So getting 3A in software and the meter reading 2A implies an error of 50% with the meter. That is way too high an error. Don't believe it.
It's good to have both as a check but i'd side with the meter. It isn't faulty.
---------- Post added at 08:16 AM ---------- Previous post was at 08:08 AM ----------
stuart0001 said:
@waylo Thanks for that excellent write up.
Picking up on the Qualcomm advertised estimate. It's disingenuous at best (I'd say they're being fraudulent) . They state in small print that it's based on the 0-50% current, so how they can justify extrapolating that instead of using the actual time is beyond me.
https://www.qualcomm.com/products/snapdragon/quick-charge
Sent from my LG-H850 using Tapatalk
Click to expand...
Click to collapse
Usual BS claims in the tech industry...once people start poking around the real picture emerges.
One Twelve said:
Am more likely to trust those cheap meters because they have proven to be invaluable in diagnosing charging problems with older devices. Software based tools proved to be not very useful with fault finding.
So getting 3A in software and the meter reading 2A implies an error of 50% with the meter. That is way too high an error. Don't believe it.
It's good to have both as a check but i'd side with the meter. It isn't faulty.
---------- Post added at 08:16 AM ---------- Previous post was at 08:08 AM ----------
Usual BS claims in the tech industry...once people start poking around the real picture emerges.
Click to expand...
Click to collapse
It's a trick one. However the reported values in apps seem in step with the % gain and battery capacity. ie it's 2800mAh capacity so at 3A you'd expect 50% charge in 28 minutes which is what you get.
Also, the meter reports output but won't account for usage drain & won't give the net +ve charge current the battery is actually receiving.
It comes down to the correct measure for capacity should be watt hours. I suspect the software reports must be using a fixed internal volt number & applying that to the received watts to give a mA figure.
Ultimately, if we think of the mA software #s as really a relative guidance simply on how fast it'll fill 2800, it's as good as any real life measure
http://www.goalzero.com/solarlife/2...-question-of-battery-capacity-in-electronics/
Sent from my LG-H850 using Tapatalk
https://www.youtube.com/watch?v=yYx6GW-HaVg
4:30 onwards.
Says he got from 5% to 91% within an hour with the stock charger..
That would be faster than QC2.
One Twelve said:
https://www.youtube.com/watch?v=yYx6GW-HaVg
4:30 onwards.
Says he got from 5% to 91% within an hour with the stock charger..
That would be faster than QC2.
Click to expand...
Click to collapse
That's bull**** I reckon
Sent from my LG-H850 using Tapatalk
stuart0001 said:
That's bull**** I reckon
Sent from my LG-H850 using Tapatalk
Click to expand...
Click to collapse
From the last page.
At 90 within the hour.
2. Does the LG charger work as fast as a certified QC2 charger?
Yes, pretty much.
Click to expand...
Click to collapse
One Twelve said:
From the last page.
At 90 within the hour.
Click to expand...
Click to collapse
I stand corrected. ?
Sent from my LG-H850 using Tapatalk
So is there any need to get additional chargers and cables ? What compelling arguments can be made to support that.
why not just use what came in the box
I don't believe LG would intentionally supply a charger & cable that could be harmful to the G5 despite what Benson Leung says.
Regarding the current discrepancies.
I put my phone in aeroplane mode & killed all running apps room minimise background draw.
If I multiply the Amps by Volts of both meter & 3C app (mV/1000) to get Watts, I'm generally getting a fairly consistent 15% higher on the meter. This is likely due to adapter compensating for efficiency loss of the cable & some draw used by background apps.
So both methods appear to be accurate in their own way.
I'd say the meter is good to assess it's maximum wattage & the voltage range but if you want to know how quick it charges the phone, software is best.
Sent from my LG-H850 using Tapatalk
---------- Post added at 07:34 PM ---------- Previous post was at 07:04 PM ----------
One Twelve said:
So is there any need to get additional chargers and cables ? What compelling arguments can be made to support that.
why not just use what came in the box
I don't believe LG would intentionally supply a charger & cable that could be harmful to the G5 despite what Benson Leung says.
Click to expand...
Click to collapse
If you use the phone a lot whilst charging, above 32c with screen on, QC 3.0 is significantly faster. In fact I've seen QC 2.0 not even be able to supply enough for a net positive current.
For me, after seeing the results, in car at least is a must for QC 3.0.
Screen off they are near identical.
The voltage granularity of QC 3.0 may mean slightly prolonged battery longevity but no really an issue when we can swap batteries anyway.
Sent from my LG-H850 using Tapatalk
stuart0001 said:
[MENTION=2562936]https://www.qualcomm.com/products/snapdragon/quick-charge
Click to expand...
Click to collapse
Says its a 1.5C charge. But only upto 50%.
Compare with this graph from here.
if you can charge the battery completely in 1 hour its a 1C charge.
But the table above indicated it took 80 minutes to completely charge. Implying its less than 1C charge for the total.
Then there is the discharge bit. Can anyone kill their battery in 1 hour ? that's a 1C discharge.
I don't know anybody that can do that. The fastest i've seen is dead in 1h30 with 4k video. 1% an hour. Still not a 1C discharge.
Am beginning to think fast charge, quick charge some other speedy charge per se ain't doing anything bad for the battery
What is more likely to do it is operating temperature.
All batteries achieve optimum service life if used at 20°C (68°F) or slightly below. If, for example, a battery operates at 30°C (86°F) instead of a more moderate lower room temperature, the cycle life is reduced by 20 percent. At 40°C (104°F), the loss jumps to a whopping 40 percent, and if charged and discharged at 45°C (113°F), the cycle life is only half of what can be expected if used at 20°C (68°F).
Click to expand...
Click to collapse
stuart0001 said:
If you use the phone a lot whilst charging, above 32c with screen on, QC 3.0 is significantly faster. In fact I've seen QC 2.0 not even be able to supply enough for a net positive current.
For me, after seeing the results, in car at least is a must for QC 3.0.
Click to expand...
Click to collapse
One Twelve said:
Says its a 1.5C charge. But only upto 50%.
Compare with this graph from here.
if you can charge the battery completely in 1 hour its a 1C charge.
But the table above indicated it took 80 minutes to completely charge. Implying its less than 1C charge for the total.
Then there is the discharge bit. Can anyone kill their battery in 1 hour ? that's a 1C discharge.
I don't know anybody that can do that. The fastest i've seen is dead in 1h30 with 4k video. 1% an hour. Still not a 1C discharge.
Am beginning to think fast charge, quick charge some other speedy charge per se ain't doing anything bad for the battery
What is more likely to do it is operating temperature.
Click to expand...
Click to collapse
You're probably right. For me, because I can replace the battery, being able to charge quickly in the car is more important than longevity.
Sent from my LG-H850 using Tapatalk

Categories

Resources